

Report To:	Municipality of West Grey Council
From:	Matt Armstrong, Manager of Environmental Planning and Regulations, Saugeen Valley Conservation Authority
Date:	March 18 th , 2025
Subject:	Durham Creek Floodplain Mapping Project
Purpose:	To provide West Grey Council with an overview of the 2023-2024 Durham Creek floodplain mapping project

Background

In January 2022, Natural Resources Canada launched the Flood Hazard Identification and Mapping Program (FHIMP) to make flood hazard information more accessible. Though this program, 165 million dollars was invested by the government of Canada to increase the resiliency of Canadians in the face of the rising frequency and costs of flood events and other climate-related disasters. Flood hazard maps inform decision-making in support of land use planning, flood mitigation, climate change adaptation, resilience building and protection of lives and properties.

Opportunity to partner with Saugeen Valley Conservation Authority (SVCA) was presented to all 15 municipalities in the Saugeen watershed. Up to 50% matched federal funding to provinces and territories was made available for eligible flood mapping projects. The Municipality of West Grey, the Town of Saugeen Shores, and the Township of Huron-Kinloss decided to proceed with mapping for the desired areas within their municipalities. SVCA was the program applicant and acted as project coordinator. Engineering companies were contracted through the Request for Proposal (RFP) process to complete all necessary modelling and mapping required to generate flood hazard maps, as well as for independent peer review.

In September 2022, West Grey Council approved a matching funding contribution of \$25,000 towards floodplain mapping for Durham Creek, which was identified as a priority area by and for the Municipality of West Grey.

Through the RFP process, DM Wills Associates Ltd. was awarded the project, which included the creation of hydrologic and hydraulic models, two public consultation sessions, and the creation of a floodplain report and mapping (see attached). Due to the influence that the Saugeen River has on the Durham Creek Floodplain, modelling was also carried out for the Saugeen River.

All mapping results underwent extensive third-party review by an independent engineering consultant procured through the RFP process, and members of the provincial and federal government administering the grant program. Through this review process, all models and maps were thoroughly scrutinized with respect to the data collected, hypotheses made, and

regulatory standards/guidelines. Extensive modelling calibration and a sensitivity analysis were completed to ensure that the hypotheses (where applicable) were valid and appropriate for the model being produced.

The project was completed in 2024, and Saugeen Conservation's floodplain hazard information has been updated to incorporate the floodplain mapping produced by DM Wills (page 252 and 253 of the DM Wills report). Similar to the rest of Durham, the Durham Creek floodplain is managed in accordance with Two-Zone policy. This policy divides the floodplain into two areas: the flood way, where flood depths and velocities are greatest and development is generally not permitted, and the flood fringe, where development may be permissible subject to conditions. These areas are shown in blue and red respectively on the DM Wills maps.

The DM Wills report included the following recommendations:

- SVCA and the Municipality of West Grey should update the floodplain mapping for the Saugeen River and then consider updates to their Two-Zone floodplain planning policies and development approvals processes for both Durham Creek and the Saugeen River in alignment with the revised mapping.
- Given the potential significant impacts of a failure of the dike at the Durham Upper Dam, the SVCA and Municipality of West Grey should consider the development of an Emergency Preparedness and Response Plan (EPRP) for the structure.

Prepared by: [Original signed by:] Matt Armstrong Manager of Environmental Planning and Regulations

Approved by: [Original signed by:] Erik Downing General Manager / Secretary-Treasurer

Flood Hazard Mapping Report

Durham Creek Flood Hazard Mapping Project

Municipality of West Grey, Ontario

D.M. Wills Project Number 23-5591

D.M. Wills Associates Limited Partners in Engineering Peterborough

March 2024

Prepared for: Saugeen Valley Conservation Authority

Summary of Revisions

Revision	Revision Title	Date of Release	Summary of Revisions
1	Hydrology Report	December 18, 2023	Issued for Client Review
2	Draft FHM Report	February 26, 2024	Issued for Client Review
3	Final FHM Report	March 1, 2024	Issued as Final

This report / proposal has been formatted considering the requirements of the Accessibility for Ontarians with Disabilities Act.

Table of Contents

1.0 Introduction	1
1.1 Background	1
1.2 Objective	1
1.3 Study Process and Report Organization	1
1.4 Study Area	3
1.5 Available Information	3
2.0 Site Reconnaissance and Topographic/Bathymetric Survey	
2.1 Overview	6
2.2 LiDAR Digital Elevation Model	6
2.3 Topographic and Bathymetric Survey	7
3.0 Hydrology Study	7
3.1 Overview	7
3.2 Available Data	8
3.2.1 Precipitation Data and Design Storms	8
3.2.2 Land Cover and Soils Data	10
3.2.3 Ontario Base Map Data	11
3.2.4 LiDAR Digital Terrain Model and Catchment Delineation	
3.2.5 Recorded Hydrometric Data	
3.2.6 Municipal Layers	
3.3 Hydrologic Model Development	
3.3.1 Model Selection	15
3.3.2 Subbasin Delineation and Hydrologic Elements	15
3.3.3 Catchment Characterization	
3.3.4 Initial Abstractions	18
3.3.5 Infiltration Loss Method	20
3.3.6 Runoff Transform – Unit Hydrograph	22
3.3.7 Recession	24
3.3.8 Reach Routing	26
3.3.9 Baseflow	27
3.3.10 Design Storm Distribution and Duration	27
3.3.11 Rainfall and Computation Time Step	
3.3.12 Areal Reduction Factor	
3.3.13 Future Development	28

3	.3.14 Model Calibration and Verification	
3.4	Hydrologic Model Results	
3	.4.1 Existing Condition Modeling Results	
3	.4.2 Future Conditions Modeling Results	40
3	.4.3 Sensitivity Analysis	40
3.5	Hydrologic Model Validation	41
3	.5.1 Overview	41
3	.5.2 Single Station Frequency Analysis	41
3	.5.3 MNR Index Flow Method	43
3	.5.4 Flood Flow Comparison Results	44
3	.5.5 Hurricane Hazel Regional Storm	45
3.6	Comparison to Past Study Results	45
3.7	Summary and Selection of Peak Flows for Hydraulic Model	45
3	.7.1 Hydrology Study Summary	45
3	.7.2 Selection of the Flood Risk Mapping Peak Flows	45
3	.7.3 Selection of the Regulatory Flood	45
4.0	Hydraulics	
4.1	Model Selection	46
4.2	Hydraulic Model Development	
4	.2.1 Hydraulic Model Domain	47
4	.2.2 Topographic and Bathymetric Data	
	.2.3 2D Flow Areas	
	.2.4 Manning's Roughness Values	
4	.2.5 Hydraulic Structures	50
4	.2.6 Obstructions	
	.2.7 Boundary Conditions	
	.2.8 Flow Data for Hydraulic Model	
4.3	Calibration/Validation	
4.4	Hydraulic Model Results	
4.5	Sensitivity Analysis	
5.0	Mapping	
5.1	Overview	
5.2	Two Zone Flood Hazard Concept	
5.3	Floodline Delineation	
5.4	Floodplain Mapping Results	57

	5.4.1	Floodline Comparison	.57
	5.4.2	Roadway Overtopping	.58
	5.4.3	Impacts to Buildings	.58
	5.4.4	Mitigation Options	.70
6.0	Cor	nclusion	71
7.0	Refe	erences	73

Figures

Figure 1 – Study Process	2
Figure 2 – Durham Creek Study Area and Saugeen River Watershed	5
Figure 3 – Saugeen River Soils Map	12
Figure 4 – Saugeen River Land Cover Plan	13
Figure 5 – Saugeen River Subbasins and Longest Flow Path	14
Figure 6 – HEC-HMS Model Schematic	16
Figure 7 – Hydrometric Gauge Locations	
Figure 8 – September 1986 Calibration Event	32
Figure 9 – September 2008 Verivication Event	33
Figure 10 – Max. Instantaneous Vs. Max. Daily Flow for Saugeen River Above Durham	42
Figure 11 – Single Station Frequency Analysis Statistical Plot – LN3	43
Figure 12 – Hydraulic Modeling Domain	48
Figure 13 – 125% of Initial Manning's Roughness	54
Figure 14 – 75% of Initial Manning's Roughness	55
Figure 15 – Two Zone Flood Hazard Approach	56

Tables

Table 1 – Background Information Provided Table 2 – Estimated Future Intensity of Hurricane Hazel Storm	
Table 3 – Recorded Hydrometric Data	11
Table 4 – Subbasin Characteristics	17
Table 5 – Canopy and Depression Storage	19
Table 6 – Loss Method - Green and Ampt	21
Table 7 – Hydrograph Peaking Factors & Recession Limb Ratios (Wanielista, et a	al 1997) 22
Table 8 – Runoff Transform – Unit Hydrograph	23
Table 9 – Recession Method Parameters.	
Table 10 – Reach Routing Parameters	26
Table 11 - Recorded Rainfall and Streamflow Data	29
Table 12 - Calibration/Verification Performance Metrics	
Table 13 – Subbasin Characteristics – Calibrated	34
Table 14 – Loss Method – Green and Ampt – Calibrated	35
Table 15 - Canopy and Depression Storage - Calibrated	37
Table 16 – Runoff Transform – Unit Hydrograph - Calibrated	
Table 17 – Existing Condition Peak Flows	40
Table 18 – Summary of Sensitivity Analysis	
Table 19 – Single Station Frequency Analysis Results	43

Table 20 – Flood Flow Comparison for 1% AEP Event	
Table 21 – Regulatory Floodplain Mapping Peak Flows	.46
Table 22 – Mannings Roughness Values	.50
Table 23 – Weir Coefficients	.51
Table 24 – Boundary Conditions	.51
Table 25 – Inflow Hydrographs for Hydraulic Model at Boundary Conditions	.52
Table 26 – Inflow Hydrographs with Climate Change Used for Hydraulic Modeling	.52
Table 27 – Roadway Overtopping	.59
Table 28 – Roadway Overtopping Climate Change	.59
Table 29 – Impacts to Buildings and Structures	.60
Table 30 – Impacts to Buildings and Structures Climate Change	.65

Appendices

Appendix A - Hydraulic Structure Surve	у
--	---

Appendix B - Hydrologic Modeling Appendix C - Hydraulic Modelling Appendix D - Regulatory Floodplain and Flood Risk Mapping

1.0 Introduction

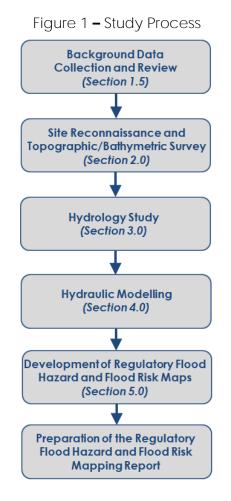
1.1 Background

The Saugeen Valley Conservation Authority (SVCA), in partnership with the Municipality of West Grey, has recognized the need to develop hydrologic and hydraulic modelling and regulatory flood hazard mapping for Durham Creek in the Town of Durham, Municipality of West Grey, Ontario. There is no existing flood hazard mapping for Durham Creek. Funding for this project is provided, in part, through the Flood Hazard Identification Mapping Program (FHIMP), which, in Ontario, is administered by the Ministry of Natural Resources and Forestry (MNRF).

1.2 Objective

The objective of this project is to provide regulatory flood hazard and flood risk mapping for Durham Creek. In addition to this work, this report covers the development of hydrologic and hydraulic models for the Saugeen River through Durham, Ontario, in order to assess the spill from the Saugeen River into Durham Creek at the Durham Upper Dam. Durham Creek extends approximately 1.3 km northeast from its confluence with the Saugeen River, which is located approximately 50 m west of the intersection of Countess Street South and South Street West. The drainage area for the Durham Creek watershed upstream of the confluence with the Saugeen River was calculated to be 0.87 km². The drainage area for Saugeen River upstream of the Durham Upper Dam was calculated to be 347.3 km².

1.3 Study Process and Report Organization


The regulatory floodplain and flood risk mapping study process is documented in Figure 1 and generally involves the following key phases:

- Background Data Collection and Review The background data collection and review involved the collection and review of available background information from the SVCA and Municipality of West Grey. The available information is summarized in Section 1.5.
- Site Reconnaissance and Topographic/Bathymetric Survey The site reconnaissance and topographic/bathymetric survey involved field work to survey and photograph existing bridge/culvert structures and collect in-water creek cross sections to supplement the LiDAR data. The outputs from the site reconnaissance are used as inputs into the hydraulic modelling. The site reconnaissance and topographic/bathymetric survey is described in Section 2.0.
- Hydrology Study The hydrology study included the delineation of the Durham Creek watershed, delineation of the applicable Saugeen River watershed and sub-watersheds, characterization of the sub-watersheds, development of a HEC-HMS (Version 4.11) model, and calibration/validation of the HEC-HMS model. The outputs from the hydrology study are the Regional Storm (Hurricane Hazel), and Annual Exceedance Probability peak flow rates, which are used as inputs into

the hydraulic modelling. The hydrology study is described in Section 3.0 of this report.

- Hydraulic Modelling The hydraulic modelling will include the preparation of the base topographic data and the development of a two-dimensional (2D) unsteady-state HEC-RAS model. The model will be created using HEC-RAS (Version 6.4.1). The development of the hydraulic model is described in Section 4.0.
- Development of Regulatory Flood Hazard and Flood Risk Maps The development of regulatory flood hazard and flood risk maps involves using the outputs from the hydraulic modelling to create the final mapping products in ArcGIS. The outputs from this phase of the project include both paper/pdf maps as well as digital flood lines. The development of the regulatory flood hazard and flood risk maps is described in Section 5.0.
- Preparation of the Regulatory Flood Hazard and Flood Risk Mapping Report This report documents the inputs and results of all analyses associated with the project as well as the final results.

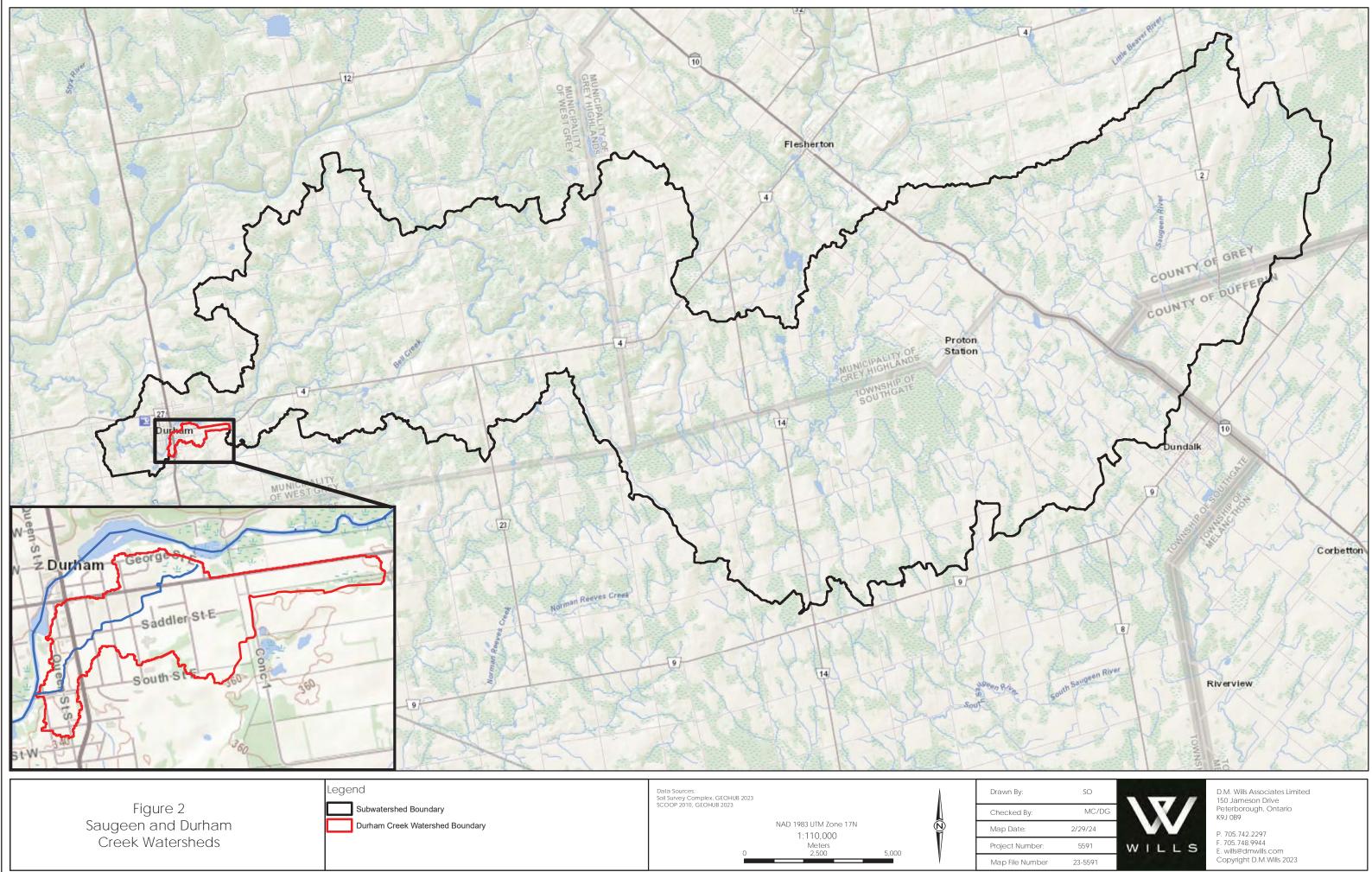
1.4 Study Area

The primary focus of this study is on Durham Creek and the section of the Saugeen River flowing through the Town of Durham, in the Municipality of West Grey, Ontario. Durham Creek extends approximately 1.3 km northeast from its confluence with the Saugeen River. The Saugeen River study area starts just north of the Grey County Road 4 bridge crossing and extends upstream approximately 8.5 km through the Town of Durham, ending before the Concession Road 2 bridge crossing. The full extent of the study area is shown in Figure 2.

There are four bridges and three dams along the Saugeen River and there are 23 culverts and foot bridges along Durham Creek. Each bridge, culvert, and dam, as well as the upstream and downstream bathymetry (where possible), was surveyed as part of the study. Additional discussion on the site reconnaissance and topographic and bathymetric survey is provided in Section 2.0.

While the hydraulic modelling and flood hazard mapping are limited to the extents described above for Durham Creek, the hydrology study included the full extent of the Saugeen River watershed upstream of the Grey County Road 4 bridge crossing. Additional discussion on the hydrology study, including the catchment and subcatchment area plans, is provided in Section 3.0.

1.5 Available Information


There have been several projects addressing the hydrology and flooding of the Saugeen River and Durham Creek, dating as far back as 1966. Table 1 shows a list of the background studies and previous maps provided by SVCA as background for this project.

Report / Model	Description	Date
Historical Flood Records	Multiple documents reviewed for background information review.	Multiple
Durham Upper Dam Drawings	Durham Upper Dam Repair Drawings	1966
Durham Upper Dam Drawings	Plan, Sections, and drawings for the Durham Upper Dam and Dike.	1976
Durham Upper Dam Site Report	Site Investigation for the Durham Upper Dam	1976
Durham Lower Dam Drawings	Engineered Drawing for the Durham Lower Dam	1978/1982
Floodline Mapping Study	Floodplain mapping report for the Town of Durham completed by Latham Group	1983

able 1 – Background Information Provided
--

Report / Model	Description	Date
Durham Upper Dam Hydraulic Assessment	Hydraulic Assessment of the Durham Upper Dam for the purposes of Dam Safety completed by WESA.	2009
LiDAR Mapping	Ontario Elevation Mapping Program.	2023
Existing GIS Data	Existing GIS data files of existing floodlines, floodplain data and aerial imagery.	Unknown
Stream Gauge Data	Stream gauge data for multiple gauges in the area of the site.	Data up to 2023
West Grey Official Plan	Official Plan for the Municipality of West Grey.	2012
Grey County Official Plan	Official Plan for Grey County, including Appendices A to E, Schedules A, B and C, and Secondary Schedules.	2019

SO
MC/DG
2/29/24
5591
23-5591

2.0 Site Reconnaissance and Topographic/Bathymetric Survey

2.1 Overview

The development of the hydraulic model and regulatory flood hazard and flood risk maps requires the use of topographic and bathymetric survey data. The primary source of topographic data for this project was the LiDAR Digital Terrain Model (DTM) that was provided by the Ministry of Natural Resources and Forestry (MNRF). The LiDAR DTM was supplemented with topographic survey of bridges, culverts, dams, and bathymetric survey of representative channel cross-sections. Wills' survey was completed in July 2023.

2.2 LiDAR Digital Elevation Model

The primary source of topographic data for this project was the LiDAR-derived Ontario Digital Terrain Model (DTM) that was provided by the MNRF through Ontario GeoHub. The DTM represents the bare earth surface and was generated from the classified LiDAR point cloud data. The User Guide, Digital Terrain Model (Lidar Derived) (MNRF, 2023), identifies the coordinate reference systems used as:

The horizontal datum of the products is the North American Datum of 1983 Canadian Spatial Reference System epoch 2010 (NAD83 (CSRS)). The horizontal unit of measure (coordinate system axis units) for all raster grid cells is metres (m).

The vertical coordinate system of the products is based on the Canadian Geodetic Vertical Datum 2013 (CGVD 2013) of the Geodetic Survey Division and is measured in metres (m).

The User Guide, Digital Terrain Model (Lidar Derived) (MNRF, 2023) indicated that the DEDSFM Huron-Georgian Bay LiDAR data that was utilized as part of the Durham Creek flood hazard mapping project has a non-vegetated vertical accuracy of 8.5 cm at a 95% confidence level (MNRF, 2023), and a vegetated accuracy of 10.06 cm. Further information regarding the accuracy and quality of the DTM can be found in the User Guide, Ontario Digital Terrain Model (LiDAR-Derived) (MNRF, 2023).

A comparison of the topographic survey and LiDAR DTM to determine whether the LiDAR DTM and topographic survey data points were generally within the expected margin of error of the survey equipment (+/- 0.10 m) was completed as part of the hydraulic report.

The DTM was used to create the overbank portions of cross sections for input into the hydraulic model. The DTM was also used as the base dataset to create the regulatory flood hazard and flood risk maps. All coordinates used throughout this study are expressed using NAD83 (CSRS) horizontal datum and CGVD2013 vertical datum. All future development proposals within the regulated area of Durham Creek will need to

be presented on the same coordinate system to ensure a direct comparison, including referencing a control monument of appropriate accuracy.

2.3 Topographic and Bathymetric Survey

The LiDAR DTM does not include the channel surface below the water level and does not define the hydraulic conveyance characteristics of the bridges, culverts, or dams, therefore, topographic and bathymetric survey was required. Wills undertook the topographic and bathymetric survey in July 2023 using a survey grade GPS rover and total station survey equipment. The horizontal datum used in the survey was NAD83 (CSRS), and the vertical datum used in the survey was CGVD 2013 to be consistent with the LiDAR data.

As part of the topographic survey, Wills surveyed each bridge, culvert and dam crossing of Durham Creek and the Saugeen River. This survey included 30 bridges, culverts, and dams. The survey of these structures was performed with the intention of gathering the information required for the development of the hydraulic model. The bridge surveys collected elevations related to the top of deck, soffit, abutments, flow obstructions (such as barrier walls) and the overflow surface (weir flow). The culvert surveys collected elevations related to inverts, obverts, dimensions, flow obstructions (such as barrier walls) and the overflow surface (weir flow).

Bathymetric cross-sections were surveyed upstream and downstream of each bridge, culvert, and dam structure, where possible. Full creek and river cross-sections were surveyed when possible; however, there were some locations that could not be safely accessed due to water level and flow conditions in the Saugeen River. Where possible, additional cross-sections were surveyed upstream and downstream of the bridge, culvert, or dam to assist with defining the overall slope for each reach of the creek and define the bathymetry of the channel between structures.

The results of the survey, along with numerous other field measurements, were used to define the structures and channel bathymetry within the hydraulic model.

3.0 Hydrology Study

3.1 Overview

The purpose of the hydrology study is to determine the peak flows at key locations along Durham Creek and the Saugeen River for the 1% Annual Exceedance Probability (AEP) return period as well as the Regional Storm (Hurricane Hazel). The results of the hydrology study are the key inputs into the hydraulic model. The regulatory flood event for the SVCA is the flood produced by the Hurricane Hazel storm or the 1% AEP flood, whichever is greater.

The hydrology study involved the development, calibration, and validation of a new hydrologic model using HEC-HMS (Version 4.11). The hydrologic model development included the following tasks:

- Delineation of the Durham Creek and Saugeen River catchments and subcatchments.
- Characterization of the Durham Creek and Saugeen River catchments and subcatchments.
- Characterization of channel routing elements.
- Development of return period storms and the Hurricane Hazel hyetographs.

Traditional calibration was possible as there is a flow gauge in the Saugeen River Watershed. Wills validated the results of the of the HEC-HMS model by comparing the hydrologic modeling results to measured flows from Water Survey of Canada Station 02FC016 (Saugeen River Above Durham).

The following sections describe the background information used in the analyses, presents the results of the hydrology study, and identify the peak flows to be used in the hydraulic model.

3.2 Available Data

- 3.2.1 Precipitation Data and Design Storms
- 3.2.1.1 Annual Exceedance Probability Storm Event and Distribution

The 1% Annual Exceedance Probability (AEP) total rainfall volume for Durham Creek is based on the Intensity-Duration-Frequency (IDF) parameters in Durham in the Municipality of West Grey and come from the MTO IDF Curve Lookup Tool. The IDF parameters and additional information regarding MTO IDF Curve Lookup Tool data sources and development are provided in Appendix B1.

The 1% AEP total rainfall volume for the Saugeen River was calculated using a single station frequency analysis. The single station frequency analysis utilized one Water Survey of Canada station that is located within the Saugeen River watershed on the Saugeen River, just upstream of the Town of Durham. Further information regarding the single station frequency analysis can be found in Section 3.5.2.

The total rainfall volumes were distributed based on various synthetic storm distributions for use within the hydrologic model. The most common synthetic storm distributions for the purposes of flood hazard mapping are the 12-hour AES storm distribution, and the 6-hour, 12-hour, and 24-hour SCS Type II storm distributions. The 6-hour SCS Type II storm was used in the hydrologic model to estimate the peak flows for Durham Creek. Rationale for choosing the 6-hour duration is discussed in Section 3.3.10.

3.2.1.2 Regional (Hurricane Hazel) Storm

The Regional Storm is considered the worst storm on record to have hit a particular region. As per the Technical Guide - River and Stream Systems: Flood Hazard Limit (MNR, 2002), Figure B-1, the Durham Creek and Saugeen River watersheds are within Zone 1, meaning that the Regional Storm is the Hurricane Hazel Storm.

Hurricane Hazel was adopted by the Ministry of Natural Resources as the storm for watersheds located within Zone 1. The 48-hour storm was developed from rainfall gauge data located at Snelgrove, just north of Brampton. The full storm is to be applied to watersheds with areas less than 25 km², with an areal reduction factor applied for larger drainage areas. The rainfall distribution for the Hazel Storm is based on the Technical Guide - River and Stream Systems: Flood Hazard Limit (MNR, 2002); the rainfall hyetograph is included in Appendix B1.

3.2.1.3 Climate Change

Wills completed a climate change scenario for the Hurricane Hazel storm based on the methodology provided by the project team for incorporating climate change in the FHIMP where the Regulatory Storm Event is Hazel. The suggested method for incorporating climate change for flood hazard modelling under FHIMP is based on recommendations by Environment and Climate Change Canada (ECCC) and can be found on the climate data portal. The method described by ECCC is outlined as follows:

- 1. Obtain the hyetograph for the regulatory storm to obtain the hourly rainfall intensity.
- 2. Obtain the mean annual temperature change (ΔT) for the specified location from the federal climate data portal. The MNRF recommends obtaining this value for the 50th percentile of the mean annual temperature change for the RCP 4.5 scenario (using CMIP 5) for time horizon 2050. The mean annual temperature change for the RCP 4.5 was 2.94 °C for Durham Creek.
- 3. Calculate the future estimated rainfall intensity, R_P , using the equation below, where R_C is the historic estimate rainfall intensity and ΔT is the long term (30-year mean) annual mean temperature change.

$R_p = R_c x 1.07^{\Delta T}$

4. Apply the future estimated rainfall (R_P)to a hydrologic model to produce estimated flood flows.

The results of applying the estimated future intensity for the Hurricane Hazel storm for climate change scenario RCP 4.5 in the year 2051 for Durham, Ontario can be found in Table 2.

Time (hrs)	Historic Estimated Intensity Hazel (mm/hr)	% of the Last 12 Hours	Future Estimated Intensity ∆T=2.94	% Increase in Intensity
First 36 hours	2.0	-	0.0	22.0%
37.0	6.0	3.0	7.3	22.0%
38.0	4.0	2.0	4.9	22.0%
39.0	6.0	3.0	7.3	22.0%

Table 2 – Estimated Future Intensity of Hurricane Hazel Storm

Time (hrs)	Historic Estimated Intensity Hazel (mm/hr)	% of the Last 12 Hours	Future Estimated Intensity ∆T=2.94	% Increase in Intensity
40.0	13.0	6.0	15.9	22.0%
41.0	17.0	8.0	20.7	22.0%
42.0	13.0	6.0	15.9	22.0%
43.0	23.0	11.0	28.1	22.0%
44.0	13.0	6.0	15.9	22.0%
45.0	13.0	6.0	15.9	22.0%
46.0	53.0	25.0	64.7	22.0%
47.0	38.0	18.0	46.4	22.0%
48.0	13.0	6.0	15.9	22.0%
Total	285.0	100.0	347.7	22.0%

Application of this climate change scenario resulted in a total of 347.7 mm representing a 22.0% increase in rainfall volume and intensity over the historic storm. The same methodology was applied to the 4%, 2%, 1% AEP storm durations and can be found in Appendix B.

3.2.2 Land Cover and Soils Data

Soils data was obtained from the Soil Survey Complex GIS Data available on GeoHub for southern Ontario. In 2015, the Ontario Ministry of Agriculture, Food and Rural Affairs and Agriculture (OMAFRA) and Agri-Food Canada, in cooperation with the Ministry of Natural Resources, compiled a geo-spatial soils database for southern Ontario. The database consolidated the existing digital soil data, mapped on a county basis, into a digitally stitched and standardized product. The GIS data indicate that the Saugeen River watershed soils consists of mostly loam in the lower basin, and organic and silty loam in the upper basin. The GIS data also indicates that most of the Durham Creek Watershed is unavailable but has sandy loam in the middle basin, and Loam in the upper basin. For the purposes of this study the lower two basins were assumed to be sandy loam and the upper basin was assumed to be loam. The soils map is included in Figure 3.

The data used to define the land cover within the Saugeen River and Durham Creek watersheds were the Southern Ontario Land Resource Information System V3.0 (SOLRIS). The data was downloaded from the MNRF's GeoHub database. SOLRIS is a landscape level inventory of natural, rural, and urban areas for the Province of Ontario with a 15 m resolution (MNRF, 2019). There are 32 landcover types in SOLRIS and these were consolidated by Wills to 7 land cover types with similar hydrologic parameters for the purposes of this study. For example swamp and thicket swamp were grouped as "wetland", and deciduous forest and coniferous forest were grouped as "forest" (MNRF, 2019). The Saugeen River Watershed is primarily comprised of agricultural land,

wetlands, and forest, while the Durham Creek Watershed is primarily built-up area and agricultural land. The land cover map is included in Figure 4.

3.2.3 Ontario Base Map Data

Ontario Base Map (OBM) data were downloaded from the MNRF's GeoHub database. The data used in this study included watercourses, wetlands, woods, and roads.

3.2.4 LiDAR Digital Terrain Model and Catchment Delineation

The primary source of topographic data for the hydrology study was the LiDAR DTM that was provided through the MNRF's GeoHub. The LiDAR for this project was collected as part of the DEDSFM Huron-Georgian Bay Project in 2022-23. The DTM represents the bare earth surface and was generated from the classified LiDAR point cloud data. Published vertical accuracy for the DEDSFM Huron-Georgian Bay Project is 8.5 cm in non-vegetated conditions and 10.06 cm in vegetated conditions (MNRF, 2023). Native Resolution of the DTM was 50 cm and was used for determining characteristics cross sections and slope data. This DTM was resampled to a 5 m resolution and was used to delineate the Saugeen River and Durham Creek basins and subbasins and longest flow paths with HEC-HMS. A map of the subbasins can be found in Figure 5.

3.2.5 Recorded Hydrometric Data

The maximum annual instantaneous discharge data and maximum annual daily discharge data were downloaded from the Water Survey of Canada website for the stream gauge station shown in Table 3. There is no discharge data available for Durham Creek.

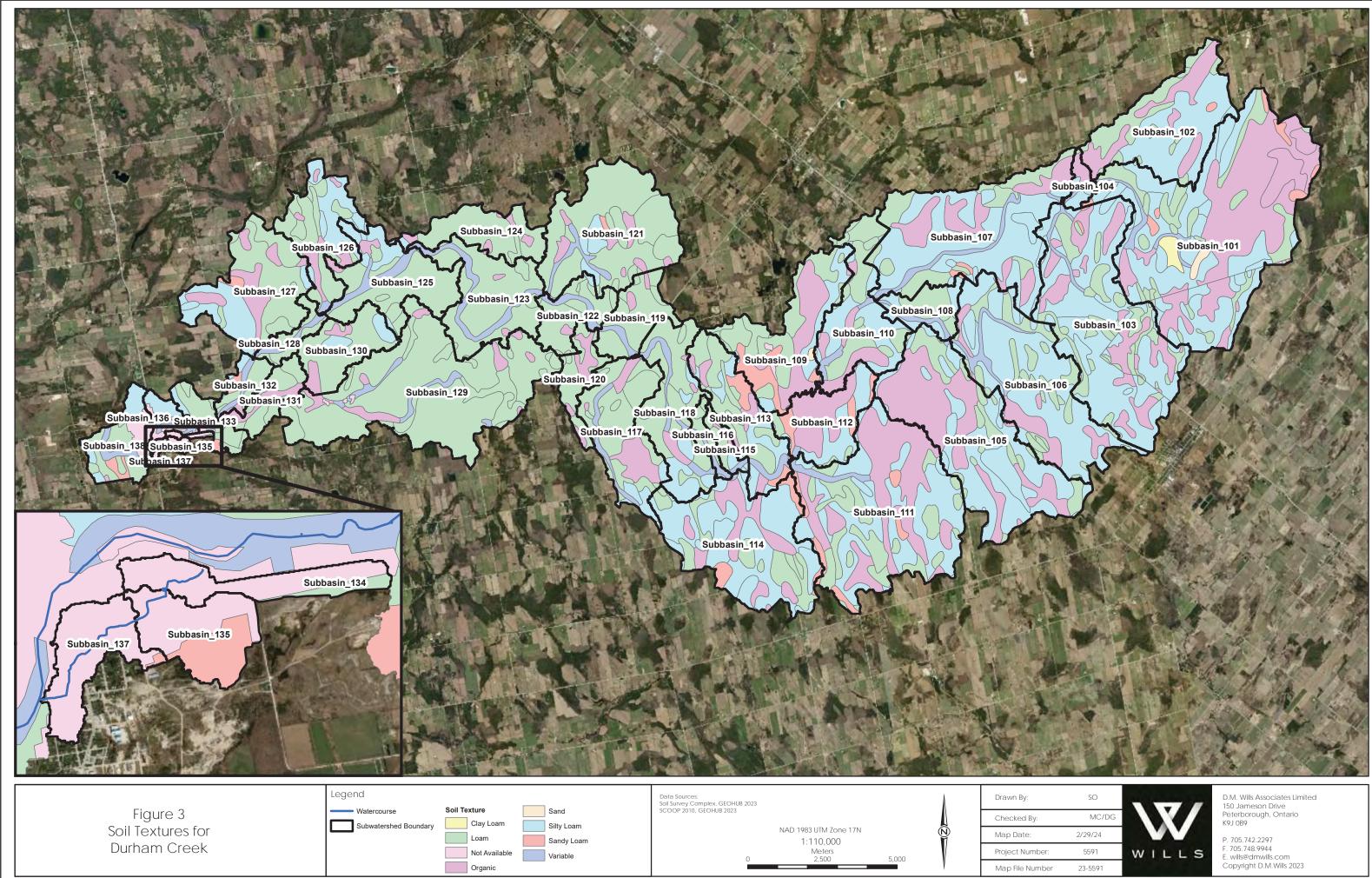
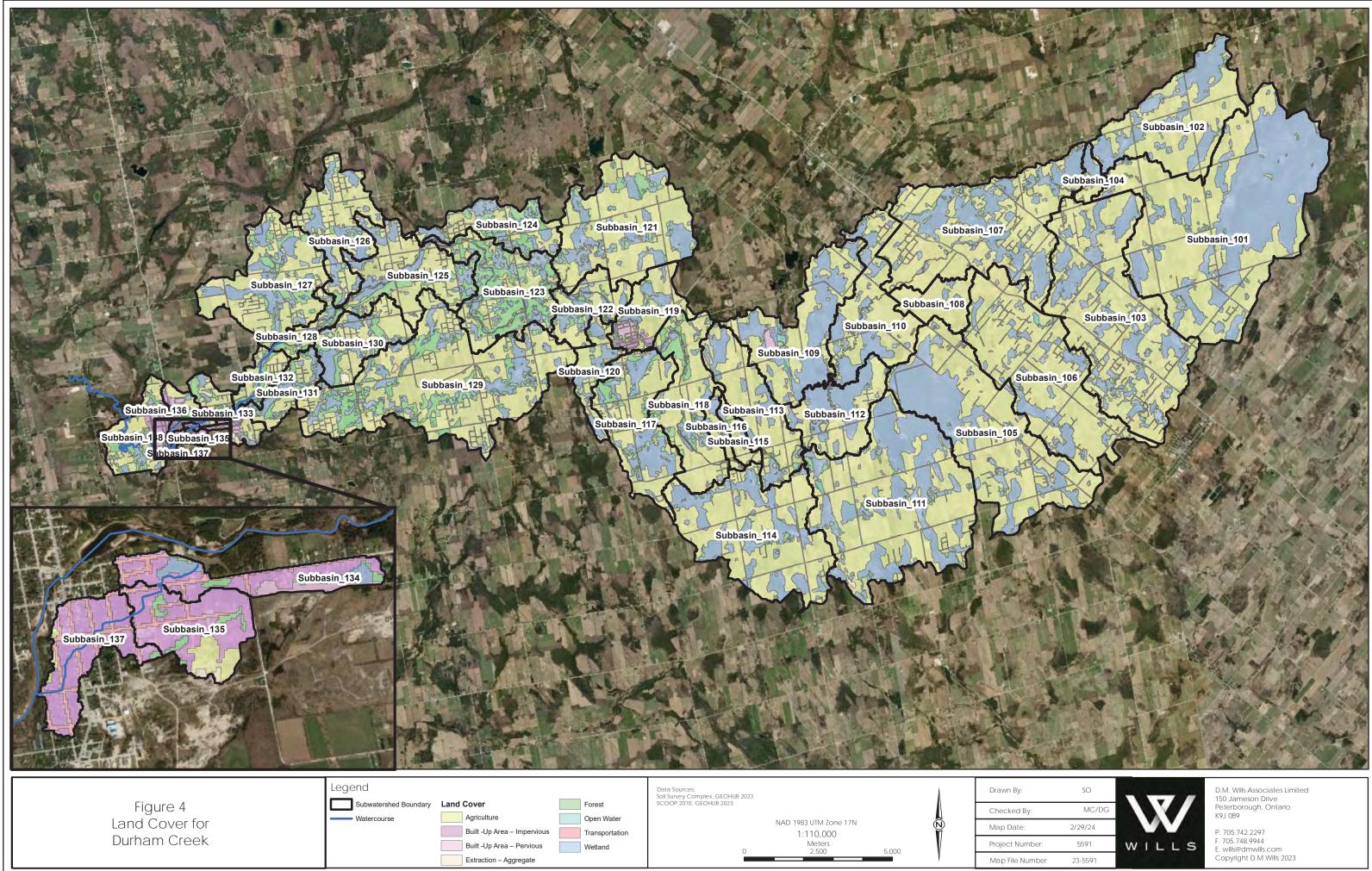
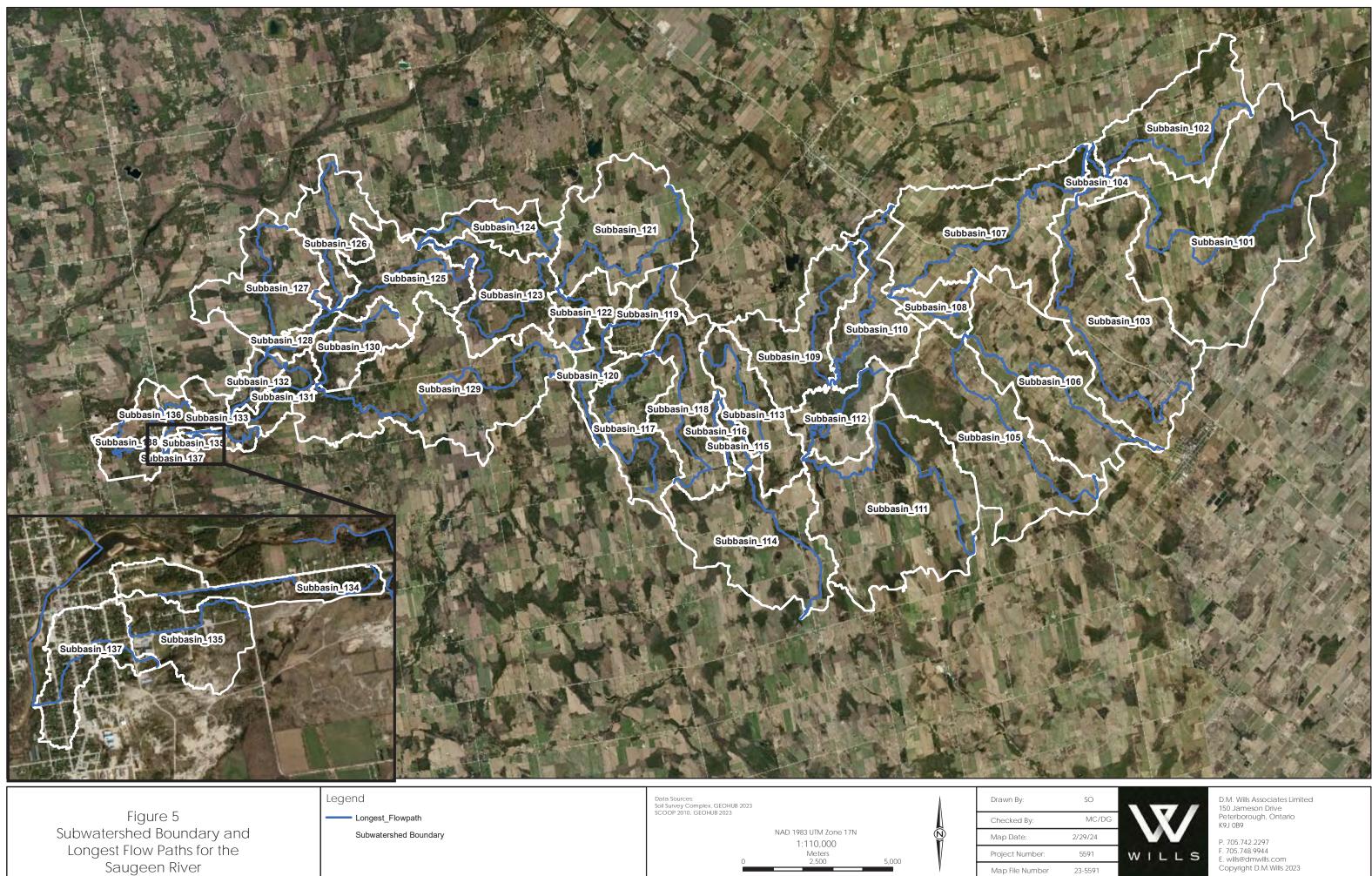

River	Station ID	Co-ordinates	Subasin Area (km²)	Period of Record (years)
Saugeen River Above Durham	02FC016	44°11'07" N 80°47'14" W	329.0	39

Table 3 – Recorded Hydrometric Data


The annual instantaneous peak flow data were used to complete a Single Station Frequency Analysis for the stream gauging station, the results of which were used to assist with the development and calibration of the hydrologic model.

3.2.6 Municipal Layers


Wills received Official Plans and a geodatabase for the Municipality of West Grey and Grey County. Based on the review of the Official Plan and Zoning, no areas of significant future development were identified. It is anticipated that any future land use conditions in the Town of Durham or within the Saugeen River Watershed as a whole will be similar to the current conditions. A map of the future land use conditions can be found in Appendix B4.

By:	SO
ed By:	MC/DG
ate:	2/29/24
Number:	5591
le Number	23-5591

By:	SO
ed By:	MC/DG
ate:	2/29/24
Number:	5591
le Number	23-5591

Figure 5
Subwatershed Boundary and
Longest Flow Paths for the
Saugeen River

Drawn E
Checke
Map Da
Project

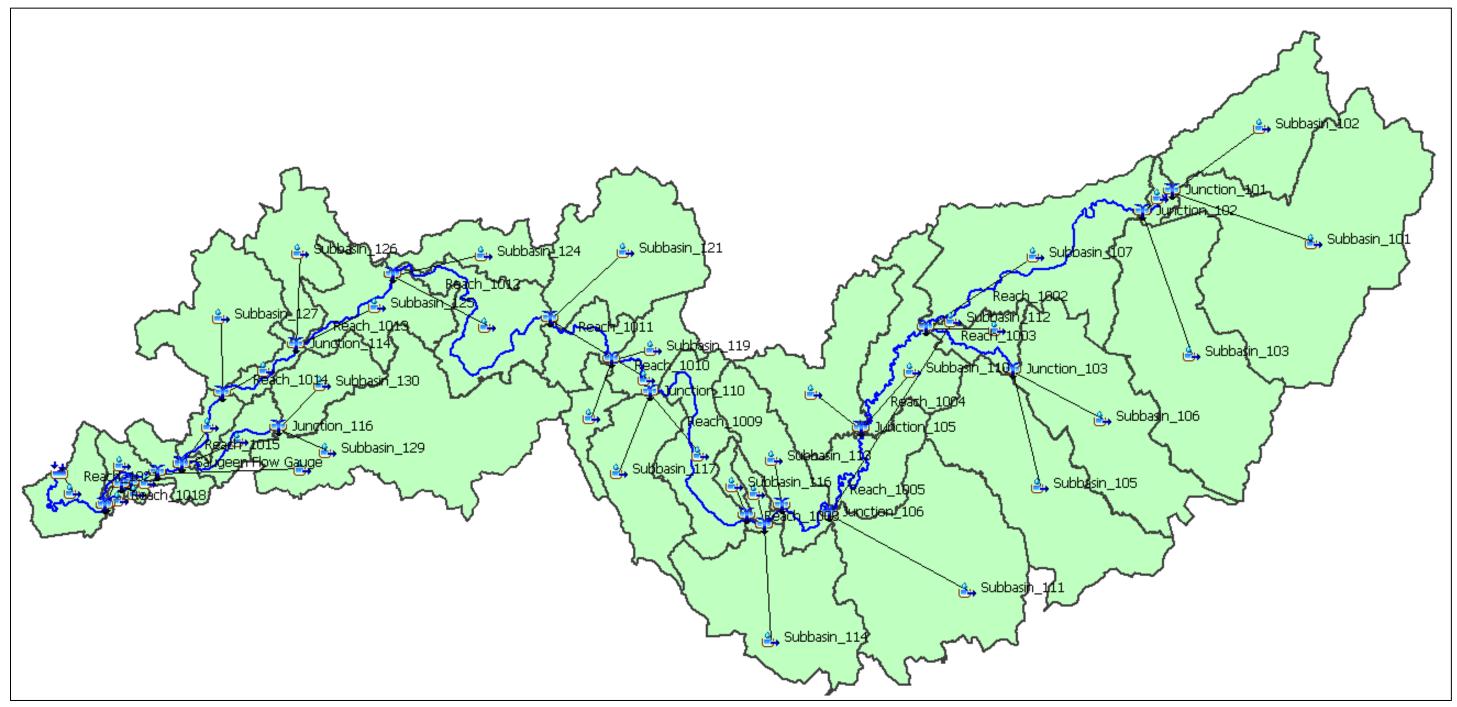
By:	SO
ed By:	MC/DG
ate:	2/29/24
Number:	5591
le Number	23-5591

3.3 Hydrologic Model Development

3.3.1 Model Selection

The HEC-HMS (Version 4.11) hydrologic model was selected by the project team and the SVCA as the preferred hydrologic model to be used for this project. HEC-HMS is a free hydrologic modeling software developed and maintained by the U.S Army Corps of Engineer's (USACE) Hydrologic Engineering Centre (HEC) with a long history of use in Canada and internationally. The software can simulate the complete hydrologic process of watersheds including rainfall, snowmelt, evapotranspiration, and soil moisture accounting in lumped, semi-lumped or gridded models. HEC-HMS is capable of single event or continuous modeling simulations and allows the user significant control of modeling approaches for each hydrologic process. Built in analysis tools to HEC-HMS include GIS, model optimization, forecasting streamflow, assessing model uncertainty, erosion and sediment transport, and water quality. HEC-HMS is well integrated with other HEC software products. The software is suitable for many applications including watershed studies, flood hazard mapping, dam safety reviews, hydraulic structure design, and flood forecasting exercises.

The following information is required to calculate the input parameters for HEC-HMS to compute hydrographs, peak flows, and routing information:


- Physical characteristics of subbasins to compute infiltration and runoff, which includes topographic information, soil drainage features, and land cover.
- Physical characteristics of the watercourses for reach routing, which includes slope, length, geometry, and reach roughness.
- Meteorological information such as rainfall, and when modeling snowmelt, temperature and snow water equivalent, to calculate hydrographs and peak flows at points of interests.

A single event, semi lumped modeling approach was chosen for computing peak flows and hydrographs for this study based on the available data and modeling objectives.

3.3.2 Subbasin Delineation and Hydrologic Elements

The Saugeen River and Durham Creek catchment areas were subdivided into 38 subbasins, 21 routing reaches, and 21 junctions based on the various tributaries and the anticipated flow change locations in the hydraulic model. The subbasins were delineated using the 5 m resolution LiDAR DTM and enforcing hydrology in HEC-HMS. The sub-catchment boundaries can be found in Figure 5. Subbasin drainage areas ranged from 0.27 km² to 36.12 km². The routing reach lengths ranged from 335 m to 11,293 m. The model layout and schematic can be found in Figure 6.

3.3.3 Catchment Characterization

The Saugeen River generally flows in a southwesterly direction through the Town of Durham. The headwaters originate just east of County Road 2 near the Town of Maxwell. The landcover is mixed rural and low to medium density residential with some commercial within the Town of Durham.

The Saugeen River catchment area was delineated using the LiDAR DTM and HEC-HMS. The Saugeen River has a total drainage area of 347.3 km² and is approximately 81.3 km by longest flowpath (not including all tributaries). Its topography can be described as rolling hills with a significant change in grade in the central watershed. The total basin relief of the watershed is 194.2 m with an average slope of 3.2%.

The hydrologic characterization parameters for each sub-catchments are provided in Table 4. These hydrologic parameters were used as the initial parameters or used to calculate other parameters in the model.

Catchment ID	Area (km²)	Basin Slope (m/m)	Basin Relief (m)	Longest Flow Path (km)	Longest Flow Path Slope (m/m)	10-85 Flowpath Length (km)	10-85 Flowpath Slope (m/m)	Elongation Ratio
Subbasin_101	36.12	0.026	46.6	18.67	0.002	14.00	0.002	0.363
Subbasin_102	12.72	0.039	46.3	9.97	0.005	7.48	0.004	0.404
Subbasin_103	24.35	0.032	39.9	14.72	0.003	11.04	0.002	0.378
Subbasin_104	1.18	0.038	16.6	3.45	0.005	2.59	0.002	0.355
Subbasin_105	21.00	0.027	38.8	11.06	0.004	8.30	0.003	0.467
Subbasin_106	18.32	0.032	42.8	11.75	0.004	8.81	0.004	0.411
Subbasin_107	20.67	0.037	36.3	13.75	0.002	10.32	0.002	0.373
Subbasin_108	3.34	0.030	25.5	5.67	0.004	4.25	0.003	0.364
Subbasin_109	11.36	0.037	32.5	7.87	0.002	5.90	0.001	0.483
Subbasin_110	9.48	0.036	36.3	11.60	0.003	8.70	0.002	0.300
Subbasin_111	25.59	0.030	32.8	14.00	0.002	10.50	0.002	0.408
Subbasin_112	6.81	0.033	27.2	8.10	0.002	6.08	0.001	0.363
Subbasin_113	7.99	0.037	40.0	6.55	0.004	4.91	0.004	0.487
Subbasin_114	17.00	0.035	40.8	7.86	0.003	5.89	0.003	0.592
Subbasin_115	1.37	0.033	23.4	3.27	0.007	2.46	0.006	0.404
Subbasin_116	1.27	0.042	25.0	3.23	0.007	2.42	0.006	0.393
Subbasin_117	9.51	0.063	53.5	10.89	0.003	8.17	0.003	0.319

Table 4 – Subbasin Characteristics

Catchment ID	Area (km²)	Basin Slope (m/m)	Basin Relief (m)	Longest Flow Path (km)	Longest Flow Path Slope (m/m)	10-85 Flowpath Length (km)	10-85 Flowpath Slope (m/m)	Elongation Ratio
Subbasin_118	9.23	0.070	54.6	9.27	0.004	6.95	0.002	0.370
Subbasin_119	4.46	0.072	48.0	4.60	0.008	3.45	0.007	0.517
Subbasin_120	3.29	0.053	36.0	6.03	0.005	4.52	0.003	0.340
Subbasin_121	14.99	0.053	65.2	10.14	0.006	7.60	0.005	0.431
Subbasin_122	4.22	0.067	44.0	4.56	0.007	3.42	0.008	0.508
Subbasin_123	9.55	0.108	90.8	12.40	0.006	9.30	0.004	0.281
Subbasin_124	5.42	0.087	88.2	7.73	0.010	5.80	0.010	0.340
Subbasin_125	9.03	0.072	76.4	8.02	0.009	6.02	0.008	0.423
Subbasin_126	7.72	0.047	45.0	7.00	0.006	5.25	0.004	0.448
Subbasin_127	11.40	0.064	51.4	7.29	0.005	5.47	0.003	0.523
Subbasin_128	1.85	0.081	50.5	4.56	0.009	3.42	0.008	0.336
Subbasin_129	24.81	0.084	110.3	15.69	0.007	11.77	0.006	0.358
Subbasin_130	5.45	0.073	66.3	6.05	0.010	4.54	0.007	0.435
Subbasin_131	3.11	0.070	50.2	5.70	0.008	4.28	0.005	0.349
Subbasin_132	2.19	0.078	47.8	3.95	0.012	2.96	0.012	0.422
Subbasin_133	2.57	0.068	43.8	3.50	0.009	2.62	0.006	0.517
Subbasin_134	0.27	0.063	22.9	1.70	0.011	1.27	0.008	0.345
Subbasin_135	0.32	0.081	20.2	1.12	0.015	0.84	0.011	0.568
Subbasin_136	1.71	0.075	60.4	3.34	0.017	2.51	0.020	0.441
Subbasin_137	0.28	0.062	26.0	1.28	0.020	0.96	0.012	0.469
Subbasin_138	4.88	0.068	55.5	6.10	0.008	4.57	0.004	0.409

3.3.4 Initial Abstractions

At the initial stage of rainfall, a certain amount of water is intercepted by vegetation before it can reach the ground and infiltrate. When water does it make through the vegetation it must fill depressions in the landscape before it can produce runoff. These collectively are called initial abstractions. HEC-HMS requires the user to define initial canopy storage, canopy storage, initial depression storage, and depression storage to account for initial abstractions. Initial abstractions were calculated for each catchment based on an area weighted average of typical values for land cover types in each catchment using GIS in accordance with EWRG, 2017. It was assumed that all canopy and depression storage in the subbasin were available for each event modeled. The

input parameters for initial abstractions can be found in Table 5. Calculations are provided in Appendix B.

Catchment ID	Initial Canopy Storage	Max Canopy Storage (mm)	Initial Depression Storage	Max Depression Storage (mm)	Total Abstraction (mm)
Subbasin_101	0.0	2.0	0.0	10.1	12.0
Subbasin_102	0.0	1.8	0.0	9.0	10.8
Subbasin_103	0.0	1.6	0.0	8.3	9.9
Subbasin_104	0.0	1.9	0.0	9.4	11.3
Subbasin_105	0.0	1.7	0.0	8.9	10.7
Subbasin_106	0.0	1.4	0.0	7.3	8.7
Subbasin_107	0.0	1.8	0.0	8.7	10.5
Subbasin_108	0.0	1.2	0.0	6.7	7.9
Subbasin_109	0.0	2.0	0.0	9.8	11.8
Subbasin_110	0.0	1.7	0.0	8.5	10.2
Subbasin_111	0.0	1.8	0.0	9.2	11.0
Subbasin_112	0.0	1.9	0.0	9.8	11.8
Subbasin_113	0.0	1.6	0.0	8.0	9.6
Subbasin_114	0.0	1.7	0.0	8.4	10.1
Subbasin_115	0.0	1.5	0.0	7.6	9.1
Subbasin_116	0.0	1.7	0.0	8.3	10.0
Subbasin_117	0.0	2.1	0.0	8.4	10.6
Subbasin_118	0.0	1.8	0.0	6.8	8.6
Subbasin_119	0.0	1.6	0.0	6.6	8.2
Subbasin_120	0.0	2.2	0.0	9.2	11.4
Subbasin_121	0.0	1.8	0.0	8.0	9.8
Subbasin_122	0.0	2.0	0.0	7.8	9.8
Subbasin_123	0.0	3.1	0.0	7.2	10.3
Subbasin_124	0.0	2.7	0.0	8.5	11.2
Subbasin_125	0.0	2.1	0.0	7.8	9.9
Subbasin_126	0.0	1.9	0.0	8.4	10.3
Subbasin_127	0.0	2.1	0.0	7.9	9.9
Subbasin_128	0.0	2.2	0.0	7.1	9.3

Table 5 - Canopy and Depression Storage

Catchment ID	Initial Canopy Storage	Max Canopy Storage (mm)	Initial Depression Storage	Max Depression Storage (mm)	Total Abstraction (mm)
Subbasin_129	0.0	2.0	0.0	7.2	9.2
Subbasin_130	0.0	2.2	0.0	7.9	10.1
Subbasin_131	0.0	2.5	0.0	8.2	10.8
Subbasin_132	0.0	2.2	0.0	6.5	8.7
Subbasin_133	0.0	2.1	0.0	7.0	9.1
Subbasin_134	0.0	1.6	0.0	3.6	5.2
Subbasin_135	0.0	1.3	0.0	2.1	3.4
Subbasin_136	0.0	1.6	0.0	4.6	6.2
Subbasin_137	0.0	1.0	0.0	1.2	2.2
Subbasin_138	0.0	2.0	0.0	6.1	8.0

3.3.5 Infiltration Loss Method

Green and Ampt method was chosen as the loss method in the model to account for infiltration and compute rainfall excess. The Green and Ampt Model was chosen as it has a long history of use for floodplain mapping in Southern Ontario, is physically based, and parameter estimation can be done with soil texture information or measured in the field. The Green and Ampt is based on **Darcy's Law** and is a simplification of the **Richard's** equation. As water content at the soil surface increases, it is pulled through the soil column by suction at the wetting front in a piston like displacement. The parameters required in HEC-HMS for the Green and Ampt model are saturated hydraulic conductivity, initial water content, porosity, suction head at the wetting front, and percent impervious.

Saturated hydraulic conductivity, field capacity, wilting point, porosity, and suction head at the wetting front were calculated for each catchment based on an area weighted average of typical values from soil textures in each catchment using GIS. Typical values were taken from Rawl et al. (1983), and Schroeter & Associates (2006) for sandy loam, silty clay loam, loam, and organic soil textures. The initial water content for each modeling scenario was assumed to be at field capacity for all events modeled in this study. The percent impervious was calculated from land cover for each catchment. It was assumed that land cover designated as transportation to be 100% impervious and built up – impervious to be 45% impervious. The Green and Ampt parameters used in the model can found in Table 6. Calculations are provided in Appendix B.

Catchment ID	Effective Porosity (vol/vol)	Field Capacity (vol/vol)	Wilting Point (vol/vol)	Suction at the Wetting Front (Average) (mm)	Saturated Hydraulic Conductivity (mm/h)	% Impervious
Subbasin_101	0.500	0.350	0.188	191.2	4.6	1.8
Subbasin_102	0.490	0.310	0.163	189.7	4.4	2.2
Subbasin_103	0.490	0.310	0.160	187.3	4.7	2.1
Subbasin_104	0.510	0.360	0.194	189.0	3.8	1.5
Subbasin_105	0.510	0.350	0.186	189.1	3.7	2.7
Subbasin_106	0.480	0.300	0.152	188.7	5.0	2.5
Subbasin_107	0.490	0.310	0.160	190.0	4.7	2.5
Subbasin_108	0.450	0.260	0.134	207.9	4.2	1.7
Subbasin_109	0.470	0.300	0.156	200.1	4.8	3.5
Subbasin_110	0.470	0.300	0.154	200.4	4.1	3.3
Subbasin_111	0.500	0.330	0.176	193.3	3.8	1.8
Subbasin_112	0.510	0.350	0.189	189.1	4.1	2.8
Subbasin_113	0.460	0.270	0.141	203.5	4.4	3.3
Subbasin_114	0.490	0.300	0.153	185.9	5.2	2.2
Subbasin_115	0.460	0.280	0.150	213.7	3.1	3.3
Subbasin_116	0.440	0.260	0.142	231.6	2.6	3.4
Subbasin_117	0.460	0.290	0.155	214.4	2.7	2.5
Subbasin_118	0.450	0.270	0.139	213.6	3.5	3.5
Subbasin_119	0.440	0.250	0.132	222.2	2.7	10.1
Subbasin_120	0.470	0.300	0.159	214.1	2.2	1.7
Subbasin_121	0.450	0.260	0.132	216.7	3.0	2.2
Subbasin_122	0.440	0.250	0.134	224.9	2.7	3.5
Subbasin_123	0.440	0.250	0.134	227.2	2.6	5.1
Subbasin_124	0.450	0.250	0.131	216.5	2.8	2.6
Subbasin_125	0.450	0.260	0.137	216.8	3.3	3.1
Subbasin_126	0.470	0.280	0.146	199.9	4.0	1.5
Subbasin_127	0.470	0.290	0.151	201.4	3.7	1.6
Subbasin_128	0.430	0.260	0.138	231.6	2.5	5.4
Subbasin_129	0.440	0.250	0.129	220.0	2.8	2.7
Subbasin_130	0.460	0.270	0.138	209.2	3.3	2.3

Table 6 - Loss Method - Green and Ampt

Catchment ID	Effective Porosity (vol/vol)	Field Capacity (vol/vol)	Wilting Point (vol/vol)	Suction at the Wetting Front (Average) (mm)	Saturated Hydraulic Conductivity (mm/h)	% Impervious
Subbasin_131	0.460	0.290	0.153	215.8	2.3	3.2
Subbasin_132	0.440	0.270	0.140	217.4	3.9	5.0
Subbasin_133	0.440	0.240	0.121	215.5	3.8	6.3
Subbasin_134	0.430	0.230	0.116	218.9	3.0	39.9
Subbasin_135	0.410	0.190	0.085	179.6	11.0	39.0
Subbasin_136	0.470	0.290	0.148	189.1	5.8	23.0
Subbasin_137	0.410	0.190	0.085	179.6	10.9	56.6
Subbasin_138	0.450	0.260	0.134	203.0	4.8	12.4

3.3.6 Runoff Transform – Unit Hydrograph

The SCS Unit Hydrograph method was used in the model to convert excess rainfall to runoff. The SCS Unit Hydrograph method is based upon an average of unit hydrographs derived from gauged rainfall and runoff for a large number of small agricultural watersheds in the United States (USACE, 2023). This method uses a dimensionless, curvilinear unit hydrograph to route excess rainfall to the subbasin outlet. HEC-HMS requires the Peaking Rate Factor and lag time as input parameters for each subbasin.

The peaking rate factor controls the volume of water on the rising and recession limbs (NOAA, 2005). Choosing a peaking rate factor is based on land cover and topography. Hydrograph peaking factors based on general description and their associated limb ratio can be found in Table 7.

General Description	Peaking Factor	Limb Ratio (Recession to Rising)
Urban areas; steep slopes	575	1.25
Typical SCS	484	1.67
Mixed urban/rural	400	2.25
Rural, rolling hills	300	3.33
Rural, slight slopes	200	5.50
Rural, very flat	100	12.00

Table 7 - Hydrograph Peaking Factors & Recession Limb Ratios (Wanielista, et al 1997)

The peaking rate factors for the subbasins in the model were chosen based on topography, land cover, and engineering judgement.

Lag is the time from the centre of mass of excess rainfall to the time to peak of a unit hydrograph (NRCS, 2007). Lag Time can be related to most watersheds with time of concentration, T_c, using the following equation (NRCS, 2007):

$$t_p = 0.6 * T_C$$

The time of concentration is used to estimate the peak discharge from a watershed, and it depends on slope, watershed characteristics and the flow path length. Time of concentration is the longest time required for runoff from the most distant point in the watershed to travel to the outlet. Many empirical equations are available to estimate the time of concentration. In this study, the TR-55 method has been used to calculate the time of concentrated flow, and channel flow along the longest flow path to calculate the time of concentration. The equation can be found below.

$T_c = t_{sheet} + t_{shallow \ contrated} + t_{channel}$

The detailed time of concentration calculations and equations for each component can be found in Appendix B1. The resulting peaking rate factor, time of concentration, and lag time for each catchment are presented in Table 8.

Catchment ID	Peaking Rate Factor	Time of Concentration (hrs)	Lag Time (Hrs)	Time of Concentration (mins)	Lag Time (min)	
Subbasin_101	484	35.9	21.6	2155.4	1293.2	
Subbasin_102	484	6.9	4.1	411.5	246.9	
Subbasin_103	484	8.5	5.1	510.9	306.5	
Subbasin_104	484	4.5	2.7	272.8	163.7	
Subbasin_105	484	7.2	4.3	429.3	257.6	
Subbasin_106	484	10.5	6.3	632.1	379.3	
Subbasin_107	484	7.5	4.5	449.7	269.8	
Subbasin_108	484	2.9	1.7	174.3	104.6	
Subbasin_109	484	10.4	6.2	623.4	374.0	
Subbasin_110	484	7.6	4.6	456.4	273.8	
Subbasin_111	484	16.8	10.1	1010.6	606.3	
Subbasin_112	484	15.6	9.4	936.8	562.1	
Subbasin_113	484	6.6	4.0	398.5	239.1	
Subbasin_114	484	8.6	5.2	515.6	309.3	
Subbasin_115	484	3.3	2.0	199.8	119.9	
Subbasin_116	484	2.4	1.4	142.8	85.7	

Table 8 – Runoff Transform – Unit Hydrograph

Catchment ID	Peaking Rate Factor	Time of Concentration (hrs)	Lag Time (Hrs)	Time of Concentration (mins)	Lag Time (min)
Subbasin_117	484	9.1	5.5	546.4	327.8
Subbasin_118	484	3.4	2.0	201.3	120.8
Subbasin_119	484	2.2	1.3	129.4	77.6
Subbasin_120	484	2.7	1.6	160.2	96.1
Subbasin_121	484	8.1	4.9	487.3	292.4
Subbasin_122	484	3.6	2.2	217.0	130.2
Subbasin_123	484	3.2	1.9	193.4	116.0
Subbasin_124	484	4.8	2.9	289.4	173.6
Subbasin_125	484	3.7	2.2	221.7	133.0
Subbasin_126	484	4.2	2.5	252.3	151.4
Subbasin_127	484	6.6	4.0	395.5	237.3
Subbasin_128	484	1.9	1.1	114.6	68.7
Subbasin_129	484	8.3	5.0	496.1	297.7
Subbasin_130	484	5.7	3.4	340.4	204.3
Subbasin_131	484	1.5	0.9	90.3	54.2
Subbasin_132	484	1.5	0.9	90.5	54.3
Subbasin_133	484	2.3	1.4	135.7	81.4
Subbasin_134	484	2.9	1.7	172.7	103.6
Subbasin_135	484	1.1	0.7	67.1	40.3
Subbasin_136	484	1.7	1.0	101.8	61.1
Subbasin_137	484	0.9	0.6	55.6	33.3
Subbasin_138	484	3.6	2.2	217.5	130.5

3.3.7 Recession

In large rural watersheds interflow generally makes up a large proportion of the total volume on the receding limb of a hydrograph. Wills used the recession baseflow method within the HEC-HMS model to account for this phenomenon. This method uses a recession constant that controls the rate that flow recedes and a Ratio to Peak to trigger when this exponential decay becomes active in the hydrograph. The recession and ratio to peak values used for each subbasin can be found in Table 9. A recession baseflow method was not used for the Durham Creek watershed given its drainage area and time of concentration.

Hydrologic Element	Recession Constant	Ratio to Peak
Subbasin_101	0.8	0.35
Subbasin_102	0.8	0.35
Subbasin_103	0.8	0.35
Subbasin_104	0.8	0.35
Subbasin_105	0.8	0.35
Subbasin_106	0.8	0.35
Subbasin_107	0.8	0.35
Subbasin_108	0.8	0.35
Subbasin_109	0.8	0.35
Subbasin_110	0.8	0.35
Subbasin_111	0.8	0.35
Subbasin_112	0.8	0.35
Subbasin_113	0.8	0.35
Subbasin_114	0.8	0.35
Subbasin_115	0.8	0.35
Subbasin_116	0.8	0.35
Subbasin_117	0.8	0.35
Subbasin_118	0.8	0.35
Subbasin_119	0.8	0.35
Subbasin_120	0.8	0.35
Subbasin_121	0.8	0.35
Subbasin_122	0.8	0.35
Subbasin_123	0.8	0.35
Subbasin_124	0.8	0.35
Subbasin_125	0.8	0.35
Subbasin_126	0.8	0.35
Subbasin_127	0.8	0.35
Subbasin_128	0.8	0.35
Subbasin_129	0.8	0.35
Subbasin_130	0.8	0.35
Subbasin_132	0.8	0.35
Subbasin_133	0.8	0.35
Subbasin_138	0.8	0.35

Table 9 - Recession Method Parameters

3.3.8 Reach Routing

The Muskingum-Cunge method was chosen as the channel routing method in the model. The Muskingum-Cunge method is based on the solution of the continuity and momentum equation. This method was chosen as it has a long history of use in flood mapping projects in Southern Ontario and has measurable physically based parameters. The Muskingum-Cunge method in HEC-HMS requires reach length, slope of the energy grade line (estimated as channel bed slope), wave celerity, characteristic cross section, and manning roughness.

The reach length, slope, cross section, and invert were calculated using the LiDAR DTM in HEC-RAS and HEC-HMS. The manning's roughness in the channel and left and right overbank were chosen based on typical values of the land cover at the characteristic cross section. A main channel manning's roughness of 0.035 was used which is typical for Ontario (EWRG, 2017). The overbank manning roughness was chosen to be 0.055 for agricultural land, and 0.08 for forested land (EWRG, 2017). Wave Celerity was estimated to be 1.5 m/s and for most applications is adequate (USACE, 2023). The reach routing parameters used in the model can be found in Table 10.

Reach	Length (m)	Slope (m/m)	Mannings n	Index Method	Shape	Left Overbank Mannings Roughness	Right Overbank Mannings Roughness	Invert
Reach_1001	1784	0.001	0.035	Celerity	8 Point	0.080	0.080	493.0
Reach_1002	11293	0.002	0.035	Celerity	8 Point	0.055	0.080	483.5
Reach_1003	4028	0.001	0.035	Celerity	8 Point	0.055	0.055	476.5
Reach_1004	6964	0.000	0.035	Celerity	8 Point	0.080	0.080	471.0
Reach_1005	5954	0.000	0.035	Celerity	8 Point	0.080	0.080	469.2
Reach_1006	3060	0.000	0.035	Celerity	8 Point	0.080	0.055	468.0
Reach_1007	853	0.000	0.035	Celerity	8 Point	0.055	0.055	467.3
Reach_1008	672	0.002	0.035	Celerity	8 Point	0.080	0.080	467.0
Reach_1009	7973	0.001	0.035	Celerity	8 Point	0.055	0.080	464.3
Reach_1010	2213	0.002	0.035	Celerity	8 Point	0.080	0.080	455.0
Reach_1011	3351	0.003	0.035	Celerity	8 Point	0.080	0.080	449.0
Reach_1012	11129	0.005	0.035	Celerity	8 Point	0.080	0.080	420.0
Reach_1013	4339	0.004	0.035	Celerity	8 Point	0.080	0.080	388.7
Reach_1014	3399	0.004	0.035	Celerity	8 Point	0.080	0.080	370.0
Reach_1015	2903	0.003	0.035	Celerity	8 Point	0.080	0.080	358.0
Reach_1016	4202	0.005	0.035	Celerity	8 Point	0.080	0.080	369.0
Reach_1017	967	0.003	0.035	Celerity	8 Point	0.080	0.080	351.0

Table 10 - Reach Routing Para	meters

Reach	Length (m)	Slope (m/m)	Mannings n	Index Method	Shape	Left Overbank Mannings Roughness	Right Overbank Mannings Roughness	Invert
Reach_1018	2488	0.007	0.035	Celerity	8 Point	0.045	0.045	350.0
Reach_1019	335	0.001	0.035	Celerity	8 Point	0.080	0.080	351.0
Reach_1020	929	0.009	0.035	Celerity	8 Point	0.045	0.045	350.0
Reach_1021	4540	0.001	0.035	Celerity	8 Point	0.080	0.080	332.0

3.3.9 Baseflow

Field surveys indicated that base flow in the context of large magnitude flood events was insignificant for Durham Creek. Therefore, baseflow has been assumed to be zero in the hydrologic model.

Wills reviewed the base flow for the Saugeen River at Durham flow gauge and found it was typically on the order of 4 m³/s. Baseflow was not included for the Saugeen River portion of the hydrology model as determining the regional flow was the main objective of the model and in this context only represented 1.4% of the total flow during this event.

3.3.10 Design Storm Distribution and Duration

The primary objective of the hydrology model is determining the AEP flood events for Durham Creek and the Regional Flood event for both Durham Creek and the Saugeen River. Durham Creek does not have a flow gauge, and therefore the AEP flood events were calculated from the SCS synthetic storms. The Saugeen River does have a flow gauge, and therefore the AEP flood events could be calculated statistically. Details regarding the statistical analysis for the Saugeen River gauge can be found in Section 3.5.2.

Typically, synthetic design storms for floodplain mapping in Ontario are represented by rain on snow (spring) events or intense thunderstorms (summer) (EWRG, 2017). Choosing a design storm approach is dependent on watershed characteristics such as land cover, time of concentration, watershed size, and seasonality of when most annual maximum peak flow rates occur (EWRG, 2017). Durham Creek has a relatively small drainage area and a short time of concentration and therefore an intense thunderstorm event is likely to govern. Therefore, Wills selected the SCS Type-2 storm distribution which has a long history of use in Ontario to simulate intense thunderstorm events for floodplain mapping.

The SCS Type-2 storm is typically developed for the 6-hour, 12-hour, or 24-hour durations. The MNRF recommends that storm duration for floodplain mapping should be approximately equal to the time of concentration of the watershed for synthetic design storms (MNRF, 2002). The time of concentration for Durham Creek was calculated to be less than 6 hours. Therefore, Wills selected the 6-hour duration to be used in the model for calculating the AEP peak flows for Durham Creek. The 1% AEP 6-hour SCS total

rainfall volume for the town of Durham is 88.2 mm with 29.6 mm falling during the most intense 15 minutes of the event. The SCS 6-hour design storm for all AEP flows and the regional storms run in the model have been provided in Appendix B1.

3.3.11 Rainfall and Computation Time Step

The computation time step and rainfall time step were considered based on watershed characteristics. The rainfall time step for modeling should be less than the minimum time of concentration of any catchment (EWRG, 2017). Subbasin 137 has shortest time of concentration of 55.6 minutes within the catchments and therefore 15 min rainfall time steps were considered appropriate for the purposes of this study. Computation time steps for small urban watersheds may require computational time steps between 5 and 10 minutes, but further reductions below these can result in unrealistic flows (MNRF, 2022). Therefore, a computation time step of 5 minutes was used for the purposes of this study.

3.3.12 Areal Reduction Factor

The equivalent circle diameter method was used to assess the need for application of areal reduction factors to the design storms. The first point of interest for hydraulic modeling, the Durham Upper Dam, is approximately 39.5 km as the "crow flies" from the most remote portion of the watershed which resulted in an equivalent circle diameter of 1,225.4 km². The second point of interest for hydraulic modeling (the upstream end of Durham Creek) is approximately 1.14 km as the "crow flies" from the most remote portion of the watershed which resulted in an equivalent diameter of 1.02 km². Generally, studies in Ontario do not use areal reduction factors for circular areas under 25 km² (MNRF, 2002). Therefore, areal reduction factors was applied to the Saugeen River watershed, but were not applied to the Durham Creek watershed during this study.

3.3.13 Future Development

In accordance with the Technical Guide – River and Stream Systems: Flooding Hazard Limit (MNR, 2002), the potential for future development must be considered in the hydrologic assessment for floodplain mapping. The Official Plans and Zoning for the Municipality of West Grey and Grey County were reviewed. Based on the review of the Official plan and Zoning, no areas of significant future development were identified. The Municipality of West Grey indicated plans to construct a large retirement home in Subbasin 135 during the start up meeting. However, given its relative size to the watershed area it was determined by Wills to have negligible affects on impervious area. It is anticipated that any future land use conditions will be similar to the current conditions.

3.3.14 Model Calibration and Verification

It is important to calibrate and verify a hydrologic model if there is available observed streamflow and rainfall available to improve model performance. Wills performed a calibration exercise using the Saugeen River Above Durham rainfall and flow gauge

data provided by SVCA, as well as the Grand River Near Dundalk rainfall gauge data provided by Grand River Conservation Authority (GRCA). The Dundalk gauge is not in the Saugeen River watershed, however, it is closer in distance to roughly 70% of the drainage area contributing to the streamflow gauge. The name, location, and period of record relevant for each gauge has been provided in Table 11. The location of the gauges can be found on Figure 7.

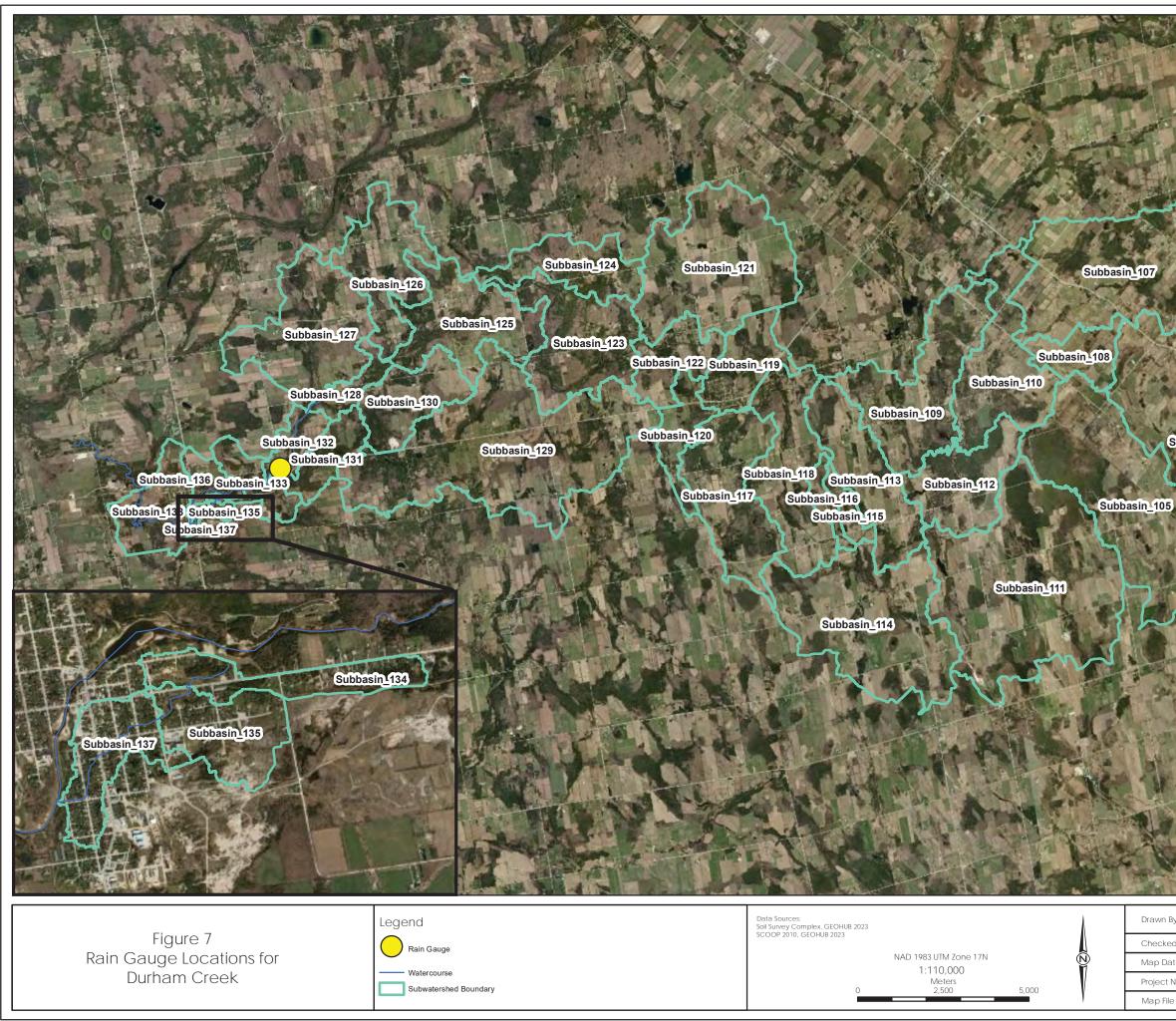
Location	Station ID	Co-ordinates	Period of Record Streamflow (years)	Period of Record Rainfall (years)
Saugeen River Above Durham	02FC016	44°11'07" N 80°47'14" W	48	39
Grand River Near Dundalk	02GA041	44°08'24" N 80°21'45" W	N/A	16

Table 11 - Recorded Rainfall and Streamflow Data

Wills used stream flow and rainfall data from a September 1986 storm to calibrate the model and a storm from September 2008 storm to verify the model. A rainfall only events was chosen by Wills for the purposes of calibration/verification because the modeling objective is to calculate peak discharge for the Hurricane Hazel event which is a rainfall only event.

The September 1986 storm had a recorded rainfall volume of 155.0 mm at the Saugeen River Above Durham over the course of approximately 40 hours. The most intense hour of the 1986 storm recorded 20.5 mm of rain. The peak discharge recorded at Saugeen River Above Durham gauge was 77.7 m³/s for this event. An additional 57.1 mm of rainfall occurred over the next week as the Saugeen River was receding for a total of 212.1 mm. The Grand River Near Dundalk rainfall gauge's period of record did not extend to 1986 and therefore was not used for this event.

The original model parameters discussed above were modified by Wills until the modeled results reasonably fit the observed results at the Saugeen River Above Durham Gauge for the 1986 event. The observed and modeled hydrographs and the hyetograph from the calibrated model can be found in Figure 8. The modeled results match the observed hydrograph well for peak flow, and general shape. The model did a reasonable job at estimating total runoff value but appears to underestimate total volume in the first two thirds of the hydrograph and overestimate it in the last one third. The timing of the modeled peak discharge is a little earlier than the observed.


The September 2008 storm had a recorded rainfall volume of 89.6 mm at the Saugeen River Above Durham gauge and 90.8 mm at the Grand River Near Dundalk over the course of approximately 36 hours. The most intense hour of the 2008 storm recorded 27.8 mm of rain at the Saugeen River Above Durham Gauge and 18.8 mm of rain at the Grand River Near Dundalk. The peak discharge recorded at the Saugeen River Above Durham gauge was 37.9 m³/s. An additional 6.1 mm of rain was recorded in the preceding 5 days at the Saugeen River Above Durham gauge for a total of 95.7 mm.

An additional 12.9 mm of rain was recorded in the preceding 5 days at the Grand River Near Dundalk gauge for a total of 103.7 mm.

Wills used the September 2008 event to verify that the calibrated model would produce satisfactory results without additional parameter changes. Wills initially applied the Saugeen River Above Durham Gauge rainfall to the lower half of the watershed, and the Grand River Near Dundalk gauge to the upper half of the watershed. After review of the modeled vs observed results the general shape appeared to have a significant double peak that was not present in the observed hydrograph. Wills then applied just the Grand River Near Dundalk to all subbasins and found the shape, volume, and peak flow performed well in this scenario, although the double peak is still present to a lesser degree. Given that the Dundalk gauge is closer to larger proportion of watershed area, it may have been more representative of the temporal and spatial variability of the actual rainfall. Therefore, Wills deemed it acceptable for the purposes of this study to rely on this gauge for verification. The observed and modeled hydrographs and the hyetograph from the verification exercise can be found in Figure 9. The modeled results match the observed hydrograph reasonably well for peak flow, general shape, and total runoff value, but appears to slightly underestimate total volume in the first two thirds of the hydrograph and overestimate it in the last one third. The timing of the modeled peak discharge is a little earlier than the observed for the initial peak and very well for the second peak. Statistical performance metrics typically used in hydrologic modeling for measuring model performance are percent difference in peak flow, Nash-Sutcliffe, Percent Bias, and Root Mean Square Error. Wills calculated or used HEC-HMS to calculate these statistical performance metrics and they have been provided in Table 12.

Start	End	Total Rainfall (mm)	Peak Discharge Observed (m³/s)	Peak Discharge Modeled (m³/s)	Percent Difference in Peak Flow	Nash Sutcliffe	Percent Bias	Root Mean Square Error
05Sep1986 00:00	25Sep1986 00:00	212.1	77.70	76.90	1.03%	0.867	-18.50%	0.40
09Sep2008 00:00	24Sep2008 00:00	103.7	37.90	42.73	-12.74%	0.843	13.00%	0.36

Subbasin_102

Subbasin 104

Subbasin_101

Subbasin_103

Subbasin_106

By:	SO
ed By:	MC/DG
ate:	2/29/24
Number:	5591
le Number	23-5591

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

P. 705.742.2297 F. 705.748.9944 E. wills@dmwills.com Copyright D.M.Wills 2023

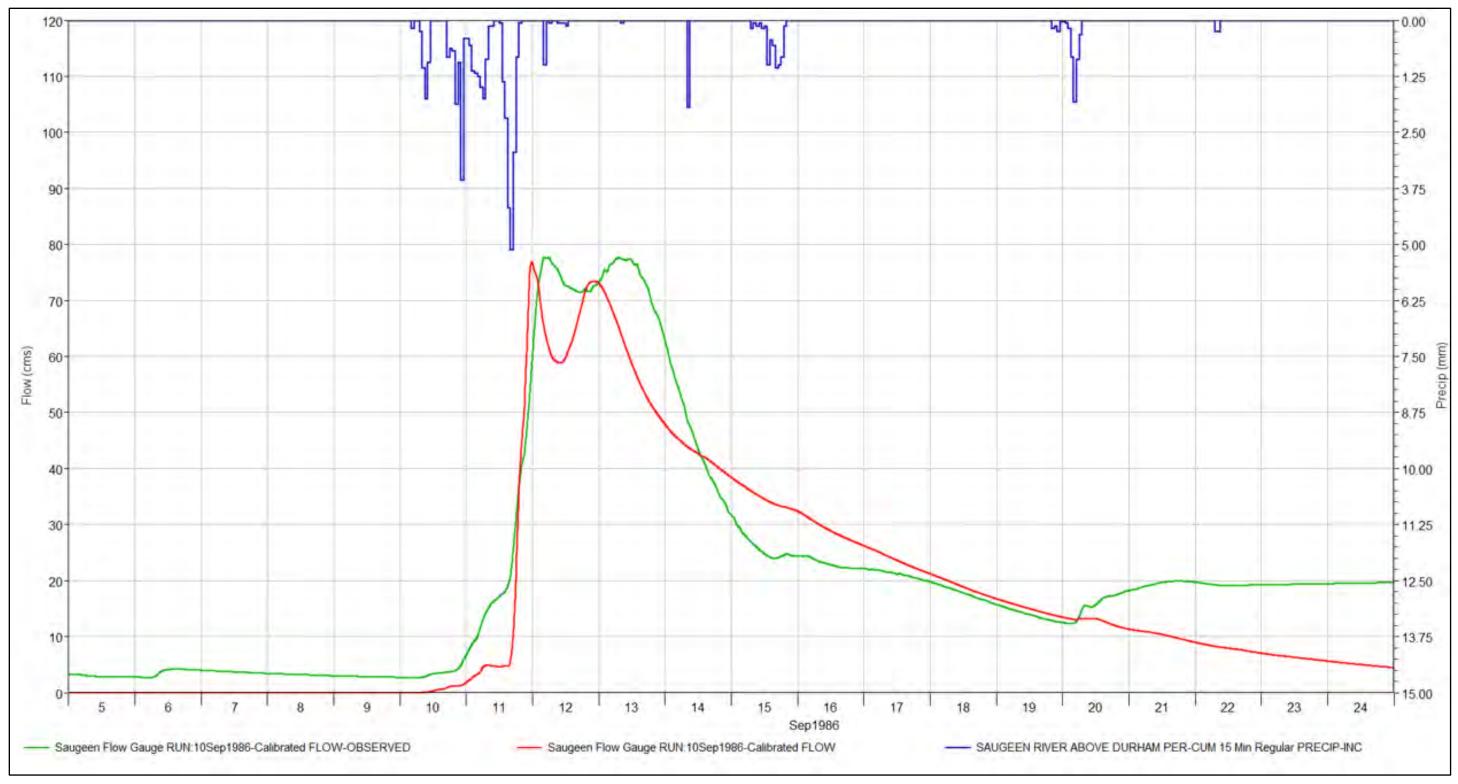


Figure 8 – September 1986 Calibration Event

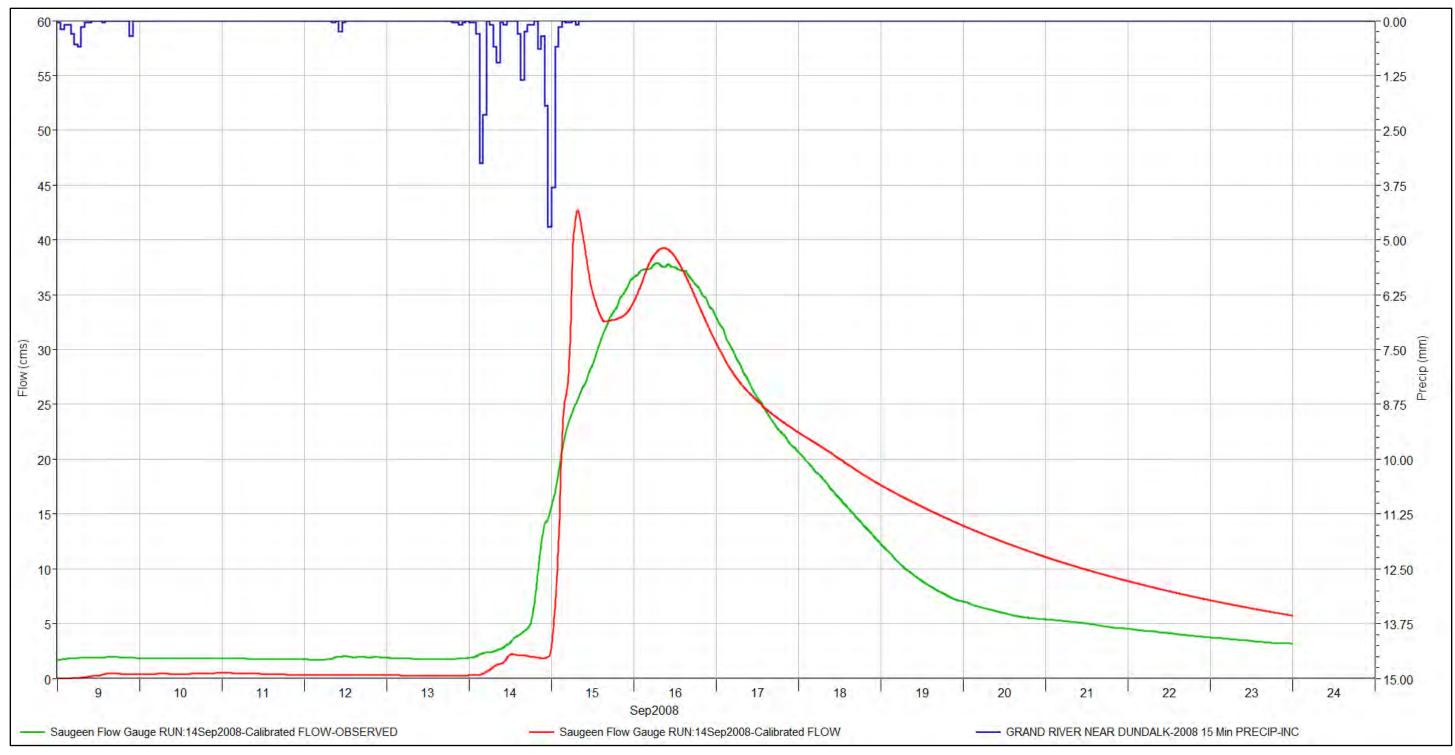


Figure 9 - September 2008 Verivication Event

Wills found the model to produce satisfactory results estimating the observed discharge at the Saugeen River Near Durham gauge during the calibration and verification exercise. Therefore, the model has been accepted for the purposes of calculating flood flows for this study. The calibrated hydrologic characterization parameters for each sub-catchment are provided in Tables 13-16 These hydrologic parameters were used to produce the results shown in Section 3.4.

Catchment ID	Area (km²)	Basin Slope (m/m)	Basin Relief (m)	Longest Flow Path (km)	Longest Flow Path Slope (m/m)	10-85 Flowpath Length (km)	10-85 Flowpath Slope (m/m)	Elongation Ratio
Subbasin_101	36.12	0.026	46.6	18.67	0.002	14.00	0.002	0.363
Subbasin_102	12.72	0.039	46.3	9.97	0.005	7.48	0.004	0.404
Subbasin_103	24.35	0.032	39.9	14.72	0.003	11.04	0.002	0.378
Subbasin_104	1.18	0.038	16.6	3.45	0.005	2.59	0.002	0.355
Subbasin_105	21.00	0.027	38.8	11.06	0.004	8.30	0.003	0.467
Subbasin_106	18.32	0.032	42.8	11.75	0.004	8.81	0.004	0.411
Subbasin_107	20.67	0.037	36.3	13.75	0.002	10.32	0.002	0.373
Subbasin_108	3.34	0.030	25.5	5.67	0.004	4.25	0.003	0.364
Subbasin_109	11.36	0.037	32.5	7.87	0.002	5.90	0.001	0.483
Subbasin_110	9.48	0.036	36.3	11.60	0.003	8.70	0.002	0.300
Subbasin_111	25.59	0.030	32.8	14.00	0.002	10.50	0.002	0.408
Subbasin_112	6.81	0.033	27.2	8.10	0.002	6.08	0.001	0.363
Subbasin_113	7.99	0.037	40.0	6.55	0.004	4.91	0.004	0.487
Subbasin_114	17.00	0.035	40.8	7.86	0.003	5.89	0.003	0.592
Subbasin_115	1.37	0.033	23.4	3.27	0.007	2.46	0.006	0.404
Subbasin_116	1.27	0.042	25.0	3.23	0.007	2.42	0.006	0.393
Subbasin_117	9.51	0.063	53.5	10.89	0.003	8.17	0.003	0.319
Subbasin_118	9.23	0.070	54.6	9.27	0.004	6.95	0.002	0.370
Subbasin_119	4.46	0.072	48.0	4.60	0.008	3.45	0.007	0.517
Subbasin_120	3.29	0.053	36.0	6.03	0.005	4.52	0.003	0.340
Subbasin_121	14.99	0.053	65.2	10.14	0.006	7.60	0.005	0.431
Subbasin_122	4.22	0.067	44.0	4.56	0.007	3.42	0.008	0.508
Subbasin_123	9.55	0.108	90.8	12.40	0.006	9.30	0.004	0.281
Subbasin_124	5.42	0.087	88.2	7.73	0.010	5.80	0.010	0.340
Subbasin_125	9.03	0.072	76.4	8.02	0.009	6.02	0.008	0.423

Table 13 - Subbasin Characteristics - Calibrated

Flood Hazard Mapping Report Durham Creek Flood Hazard Mapping Project Saugeen Valley Conservation Authority

Catchment ID	Area (km²)	Basin Slope (m/m)	Basin Relief (m)	Longest Flow Path (km)	Longest Flow Path Slope (m/m)	10-85 Flowpath Length (km)	10-85 Flowpath Slope (m/m)	Elongation Ratio
Subbasin_126	7.72	0.047	45.0	7.00	0.006	5.25	0.004	0.448
Subbasin_127	11.40	0.064	51.4	7.29	0.005	5.47	0.003	0.523
Subbasin_128	1.85	0.081	50.5	4.56	0.009	3.42	0.008	0.336
Subbasin_129	24.81	0.084	110.3	15.69	0.007	11.77	0.006	0.358
Subbasin_130	5.45	0.073	66.3	6.05	0.010	4.54	0.007	0.435
Subbasin_131	3.11	0.070	50.2	5.70	0.008	4.28	0.005	0.349
Subbasin_132	2.19	0.078	47.8	3.95	0.012	2.96	0.012	0.422
Subbasin_133	2.57	0.068	43.8	3.50	0.009	2.62	0.006	0.517
Subbasin_134	0.27	0.063	22.9	1.70	0.011	1.27	0.008	0.345
Subbasin_135	0.32	0.081	20.2	1.12	0.015	0.84	0.011	0.568
Subbasin_136	1.71	0.075	60.4	3.34	0.017	2.51	0.020	0.441
Subbasin_137	0.28	0.062	26.0	1.28	0.020	0.96	0.012	0.469
Subbasin_138	4.88	0.068	55.5	6.10	0.008	4.57	0.004	0.409

Table 14 – Loss Method – Green and Ampt – Calibrated

Catchment ID		Field Capacity (vol/vol)		Suction at the Wetting Front (Average) (mm)	Saturated Hydraulic Conductivity (mm/h)	% Impervious
Subbasin_101	0.500	0.350	0.188	191.2	4.6	1.8
Subbasin_102	0.490	0.310	0.163	189.7	4.4	2.2
Subbasin_103	0.490	0.310	0.160	187.3	4.7	2.1
Subbasin_104	0.510	0.360	0.194	189.0	3.8	1.5
Subbasin_105	0.510	0.350	0.186	189.1	3.7	2.7
Subbasin_106	0.480	0.300	0.152	188.7	5.0	2.5
Subbasin_107	0.490	0.310	0.160	190.0	4.7	2.5
Subbasin_108	0.450	0.260	0.134	207.9	4.2	1.7
Subbasin_109	0.470	0.300	0.156	200.1	4.8	3.5
Subbasin_110	0.470	0.300	0.154	200.4	4.1	3.3
Subbasin_111	0.500	0.330	0.176	193.3	3.8	1.8
Subbasin_112	0.510	0.350	0.189	189.1	4.1	2.8
Subbasin_113	0.460	0.270	0.141	203.5	4.4	3.3

Catchment ID	Effective Porosity (vol/vol)	Field Capacity (vol/vol)		Suction at the Wetting Front (Average) (mm)	Saturated Hydraulic Conductivity (mm/h)	% Impervious
Subbasin_114	0.490	0.300	0.153	185.9	5.2	2.2
Subbasin_115	0.460	0.280	0.150	213.7	3.1	3.3
Subbasin_116	0.440	0.260	0.142	231.6	2.6	3.4
Subbasin_117	0.460	0.290	0.155	214.4	2.7	2.5
Subbasin_118	0.450	0.270	0.139	213.6	3.5	3.5
Subbasin_119	0.440	0.250	0.132	222.2	2.7	10.1
Subbasin_120	0.470	0.300	0.159	214.1	2.2	1.7
Subbasin_121	0.450	0.260	0.132	216.7	3.0	2.2
Subbasin_122	0.440	0.250	0.134	224.9	2.7	3.5
Subbasin_123	0.440	0.250	0.134	227.2	2.6	5.1
Subbasin_124	0.450	0.250	0.131	216.5	2.8	2.6
Subbasin_125	0.450	0.260	0.137	216.8	3.3	3.1
Subbasin_126	0.470	0.280	0.146	199.9	4.0	1.5
Subbasin_127	0.470	0.290	0.151	201.4	3.7	1.6
Subbasin_128	0.430	0.260	0.138	231.6	2.5	5.4
Subbasin_129	0.440	0.250	0.129	220.0	2.8	2.7
Subbasin_130	0.460	0.270	0.138	209.2	3.3	2.3
Subbasin_131	0.460	0.290	0.153	215.8	2.3	3.2
Subbasin_132	0.440	0.270	0.140	217.4	3.9	5.0
Subbasin_133	0.440	0.240	0.121	215.5	3.8	6.3
Subbasin_134	0.430	0.230	0.116	218.9	3.0	39.9
Subbasin_135	0.410	0.190	0.085	179.6	11.0	39.0
Subbasin_136	0.470	0.290	0.148	189.1	5.8	23.0
Subbasin_137	0.410	0.190	0.085	179.6	10.9	56.6
Subbasin_138	0.450	0.260	0.134	203.0	4.8	12.4

Table 15 - Canopy	and Depression	Storage - Calibrated
-------------------	----------------	----------------------

Catchment ID	Initial Canopy Storage	Max Canopy Storage (mm)	Initial Depression Storage	Max Depression Storage (mm)	Total Abstraction (mm)
Subbasin_101	0.0	2.0	0.0	10.1	12.0
Subbasin_102	0.0	1.8	0.0	9.0	10.8
Subbasin_103	0.0	1.6	0.0	8.3	9.9
Subbasin_104	0.0	1.9	0.0	9.4	11.3
Subbasin_105	0.0	1.7	0.0	8.9	10.7
Subbasin_106	0.0	1.4	0.0	7.3	8.7
Subbasin_107	0.0	1.8	0.0	8.7	10.5
Subbasin_108	0.0	1.2	0.0	6.7	7.9
Subbasin_109	0.0	2.0	0.0	9.8	11.8
Subbasin_110	0.0	1.7	0.0	8.5	10.2
Subbasin_111	0.0	1.8	0.0	9.2	11.0
Subbasin_112	0.0	1.9	0.0	9.8	11.8
Subbasin_113	0.0	1.6	0.0	8.0	9.6
Subbasin_114	0.0	1.7	0.0	8.4	10.1
Subbasin_115	0.0	1.5	0.0	7.6	9.1
Subbasin_116	0.0	1.7	0.0	8.3	10.0
Subbasin_117	0.0	2.1	0.0	8.4	10.6
Subbasin_118	0.0	1.8	0.0	6.8	8.6
Subbasin_119	0.0	1.6	0.0	6.6	8.2
Subbasin_120	0.0	2.2	0.0	9.2	11.4
Subbasin_121	0.0	1.8	0.0	8.0	9.8
Subbasin_122	0.0	2.0	0.0	7.8	9.8
Subbasin_123	0.0	3.1	0.0	7.2	10.3
Subbasin_124	0.0	2.7	0.0	8.5	11.2
Subbasin_125	0.0	2.1	0.0	7.8	9.9
Subbasin_126	0.0	1.9	0.0	8.4	10.3
Subbasin_127	0.0	2.1	0.0	7.9	9.9
Subbasin_128	0.0	2.2	0.0	7.1	9.3
Subbasin_129	0.0	2.0	0.0	7.2	9.2

Catchment ID	Initial Canopy Storage	Max Canopy Storage (mm)	Initial Depression Storage	Max Depression Storage (mm)	Total Abstraction (mm)
Subbasin_130	0.0	2.2	0.0	7.9	10.1
Subbasin_131	0.0	2.5	0.0	8.2	10.8
Subbasin_132	0.0	2.2	0.0	6.5	8.7
Subbasin_133	0.0	2.1	0.0	7.0	9.1
Subbasin_134	0.0	1.6	0.0	3.6	5.2
Subbasin_135	0.0	1.3	0.0	2.1	3.4
Subbasin_136	0.0	1.6	0.0	4.6	6.2
Subbasin_137	0.0	1.0	0.0	1.2	2.2
Subbasin_138	0.0	2.0	0.0	6.1	8.0

Table 16 - Runoff Transform - Unit Hydrograph - Calibrated

Catchment ID	Peaking Rate Factor	Lag Time (min)
Subbasin_101	200	1551.9
Subbasin_102	200	296.3
Subbasin_103	200	367.8
Subbasin_104	200	196.4
Subbasin_105	200	309.1
Subbasin_106	200	455.1
Subbasin_107	200	323.8
Subbasin_108	200	125.5
Subbasin_109	200	448.8
Subbasin_110	200	328.6
Subbasin_111	200	727.6
Subbasin_112	200	674.5
Subbasin_113	200	286.9
Subbasin_114	200	371.2
Subbasin_115	200	143.8
Subbasin_116	200	102.8
Subbasin_117	200	393.4
Subbasin_118	200	144.9

Catchment ID	Peaking Rate Factor	Lag Time (min)
Subbasin_119	200	93.2
Subbasin_120	200	115.3
Subbasin_121	200	350.8
Subbasin_122	200	156.2
Subbasin_123	200	139.2
Subbasin_124	200	208.3
Subbasin_125	200	159.6
Subbasin_126	200	181.7
Subbasin_127	200	284.8
Subbasin_128	200	82.5
Subbasin_129	200	357.2
Subbasin_130	200	245.1
Subbasin_131	200	65.0
Subbasin_132	200	65.1
Subbasin_133	200	97.7
Subbasin_134	484	124.3
Subbasin_135	484	48.3
Subbasin_136	200	73.3
Subbasin_137	484	40.0
Subbasin_138	484	156.6

3.4 Hydrologic Model Results

3.4.1 Existing Condition Modeling Results

The HEC-HMS model was run for the 50% AEP, 20% AEP, 10% AEP, 4% AEP, 2% AEP, and 1% AEP SCS 6-hour storms, and the Regional storm event using the existing condition parameter set as described in Section 3.3. The peak flows for the 4%, 2%, 1% AEP, and regional storm for each hydrologic element in Durham Creek, as well as the regional flow upstream of the Upper Dam (Junction_118) are provided in Table 17. The results for all AEP storms can be found in Appendix B2.

Hydrologic Element	Drainage Area (km²)	4% AEP Peak Discharge (m³/s)	2% AEP Peak Discharge (m³/s)	1% AEP Peak Discharge (m ³ /s)	Hazel Peak Discharge (m³/s)
Subbasin_134	0.3	1.1	1.3	1.4	2.3
Junction_119	0.3	1.1	1.3	1.4	2.3
Reach_1019	0.3	1.1	1.2	1.4	2.3
Subbasin_135	0.3	2.3	2.6	3.0	3.2
Junction_120	0.6	2.6	3.0	3.4	4.6
Reach_1020	0.6	2.6	3.0	3.4	4.6
Subbasin_137	0.3	2.7	3.0	3.4	3.2
OutflowDurham	0.9	4.8	5.6	6.3	7.4
Junction_118	347.3	N/A ¹	N/A ¹	N/A ¹	276.4

Table 17 – Existing Condition Peak Flows

1. 6-hour AEP storms were run for the Saugeen River, but they are not appropriate for the purposes of this study and are therefore not reported in this table. However, the results from these model runs can be found in Appendix B2.

The Regional Storm produced larger peak flows than the 1% AEP at the junctions, reaches, and most subbasins. The 1% AEP event produced larger peak flows than the Hurricane Hazel Storm at Subbasin 137. Subbasin 137 is characterized as having lower lag time and/or higher percent imperviousness.

3.4.2 Future Conditions Modeling Results

As described in Section 3.3.12, based on the review of the Official Plan and the Zoning, significant future development is not anticipated for the Town of Durham or within the Saugeen River Watershed; therefore, no future conditions were modelled as part of the hydrology study.

3.4.3 Sensitivity Analysis

A sensitivity analysis was performed on several parameters to assess their relative impact on peak flows and runoff volume. The typical range for sensitivity analysis for floodplain mapping is 75% to 125% of the estimated parameter values (EWRG, 2017). A summary of the results for peak can be found in Table 18. The full results of the analysis can be found in Appendix B2.

	75% of Estim	nated Value	125% of Estimated Value		
Parameter	Maximum Net	Maximum	Maximum Net	Maximum	
raiametei	Change in Peak Flow (m³/s)	Percent Change in Peak Flow	Change in Peak Flow (m³/s)	Percent Change in Peak Flow	
Hydraulic Conductivity	28.9	17.5%	-26.9	-17.3%	
Suction at the Wetting Front	8.7	4.7%	-8.3	-4.5%	
Initial Water Content	-12.0	-7.6%	13.2	8.2%	
Percent Impervious	-2.2	-4.7%	2.1	4.7%	
Lag Time	61.2	33.1%	-39.9	-19.8%	
Slope	-19.9	-13.3%	9.6	4.7%	
Canopy Storage	0.2	0.2%	-0.2	-0.2%	
Depression Storage	4.7	2.8%	-4.7	-2.7%	

Table 10 Curana	y of Sensitivity Analysis
1300018 = 5000030	

The results from the analyses show that hydraulic conductivity and lag time were the most sensitive parameters in the model. Canopy and Depression storage were found to be the least sensitive parameters. Channel slope, Suction at the Wetting Front, Initial Water Content and Percent Impervious were found to be moderately sensitive.

3.5 Hydrologic Model Validation

3.5.1 Overview

This section describes several methods used to calculate peak flows for the purpose of validating the hydrologic model and single station frequency results. While there are no regional frequency methods that were appropriate for the small drainage area associated with Durham Creek, the parameters in the model were globally changed during the calibration exercise for the Saugeen River and, therefore, Wills has assumed that the results from the calibrated model are representative of Durham Creek as well.

3.5.2 Single Station Frequency Analysis

The Saugeen River Above Durham Water Survey of Canada Gauging Station (02FC016) was used for the Single Station Frequency Analysis (SSFA). Wills downloaded the maximum annual instantaneous flow (MAIF) and the maximum annual daily flow (MADF) data from Water Survey of Canada. There were 29 years of data available for the MAIF and 37 years of MADF. In general, the MADF flow data is always more complete than then the MAIF data as WSC QA/QC process removes MAIF when flow is under the influence by ice or some other factor. These missing events can often be significant flood events that are important to the gauge record and can result in underestimated AEP flows generated from a SSFA. Additionally, general guidelines suggest that 30 years at minimum is required and 50 years preferred to confidently generate a 1% AEP event from a SSFA (Watt et al.). Therefore, it is often desirable to extend the data record if possible.

Wills used 26 events where MAIF and MADF data were both available and occurred within the same time frame (+/- 1 day) to produce a relationship using linear regression between the two data sets. The results of this analysis can be found in Figure 10.

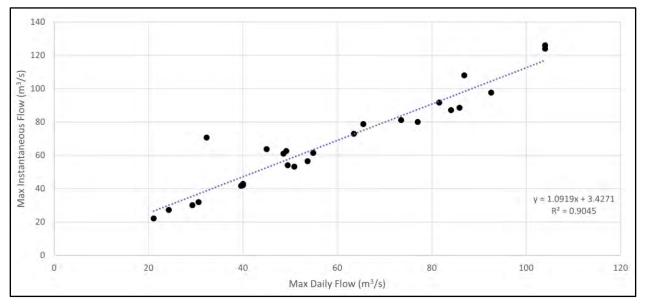


Figure 10 - Max. Instantaneous Vs. Max. Daily Flow for Saugeen River Above Durham

The results of the linear regression analysis showed there was a good correlation between MADF and MAIF with a coefficient of determination of 0.9045. Wills then used the linear regression formula of y=1.0919x+3.471 where x is MADF and y is MAIF to estimate the missing data from MAIF where MADF was present. Wills used this method to extend the MAIF data record to 36 years which is sufficient period of record to confidently produce a 1% AEP flood event using SSFA.

Wills input the MAIF data into the statistical software package HEC-SSP. HEC-SSP is used to complete a statistical analysis of the data to determine Annual Exceedance Probability peak flows. The Log Normal 3 Parameter (LN3) and Log Pearson 3 (LP3) distributions using method of moments were evaluated. Wills found that both methods reasonably represented the data and therefore selected LN3 on the basis of that LN3 is a common distribution used in Ontario. The results from the Single Station Frequency Analysis can be found in Table 19 and the statistical plot can be Figure 11.

The drainage area to the Saugeen River gauge represents 89% of the drainage area to the Durham Upper Dam. The transposition of the data can be calculated using the following formula:

$$Q2 = Q1 \left(\frac{A2}{A1}\right)^{0.75}$$

Where Q2 is the transposed flows, Q1 is the calculated AEP flows, A1 is the drainage area at the gauge, and A2 is the drainage area at the Durham Upper Dam. The results from the flow transposition can be found in Table 19.

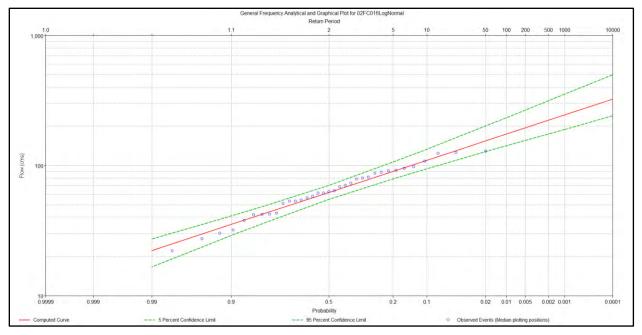


 Table 19 - Single Station Frequency Analysis Results

Return Period (years)	Probability	Annual Exceedance Probability Percent	Flow at Gauge (m³/s)	Transposed Flow (m³/s)
1000	0.001	0.1	244.7	265.6
100	0.01	1	174.4	189.3
50	0.02	2	154.6	167.8
25	0.04	4	135.1	146.6
10	0.1	10	109.8	119.2
5	0.2	20	90.3	98.0
2	0.5	50	62.2	67.5
1.25	0.8	80	42.8	46.4
1.11	0.9	90	35.3	38.3
1.05	0.95	95	30.0	32.6
1.01	0.99	99	22.2	24.1

3.5.3 MNR Index Flow Method

The MNRF Index Flood Method (IFM) was developed by the MNRF to provide flow rates in catchments where a limited number of years of data were available. 238 gauging stations were analyzed to determine homogeneous regions with common hydrologic

characteristics. 12 regions were identified, and a frequency curve was developed for each. Within this applicable region (Region 3), this method is recommended for watersheds between 86 km² and 3,960 km²; therefore, this method is applicable to the Saugeen River watershed, but not the Durham Creek watershed. In Region 3, which contains the Saugeen River watershed, the index flood is calculated as:

$Q2 = 0.20(Drainage Area)^{0.957}$

Where, Q2 is the 50% AEP period index flood in m³/s and drainage area is in km².

The remaining return period flows (20% AEP through 1% AEP) are calculated as ratios of the Index Flood. The applicable ratios for Region 3 are as follows:

Index	Q2	Q5	Q10	Q25	Q50	Q100
Ratio	1.00	1.35	1.60	1.90	2.20	2.50

A comparison of the modelled flows with the MNRF Index Flow Method is provided in Table 20.

3.5.4 Flood Flow Comparison Results

The results from the SSFA completed by Wills was compared to the computed results of the MNR Index flood, and the results from other flood studies completed historically for the Saugeen River. A summary table of the flood flows for the 1% AEP event can be found in Table 20.

	Peak Flow (m ³ /s)					
Subbasin	Drainage Area (km²)	Single Station Frequency Analysis Transposed (Wills 2023)	MNR Index Flow Method	Single Station Frequency Analysis and Transposed by Wills (WESA 2009)	Lathem Group Report (1983)	
Drainage Area at Durham Upper Dam	347.3	189.3	135.0	155.2	185	

Table 20 - Flood Flow Comparison for 1% AEP Event

In general, review of the comparison peak flows show that the MNR IFM results are lower than those produced through the SSFA completed by Wills. Wills SSFA was found to be slightly higher than Lathem Group Report 1983 which used downstream gauges on the Saugeen River (i.e., not the Saugeen River Above Durham Gauge) to estimate the 1% AEP. The SSFA completed by WESA was lower than what was estimated by Wills. Wills SSFA has a significantly longer period of record that was analyzed and therefore the results were accepted as the AEP flood events for the purposes of this study.

3.5.5 Hurricane Hazel Regional Storm

The hydrologic model was calibrated and verified for the Saugeen River using historic rainfall and flow data. In general, the model does a satisfactory job at modeling peak flows during the calibration and verification events. Therefore, the estimated peak flows calculated by the model for Hurricane Hazel Storm were assumed for the purposes of this study for both the Durham Creek and Saugeen River at the Durham Upper Dam.

3.6 Comparison to Past Study Results

The previous floodplain mapping for the Town of Durham, Ontario along the Saugeen River was completed in 1983 by Latham Group, and in 2009 by WESA. The results of the modeling for the Hurricane Hazel Storm compare reasonably well with the original peak flows produced in these studies. The Hurricane Hazel Storm flow rate calculated by Wills was 276.4 m³/s compared to the 305 m³/s WESA calculated. It was unclear from the report if the WESA HEC-HMS model had been calibrated.

Wills reviewed the Durham Creek background data, and it does not have previous hydrology completed.

- 3.7 Summary and Selection of Peak Flows for Hydraulic Model
- 3.7.1 Hydrology Study Summary

Wills developed a hydrologic model for the Saugeen River and Durham Creek. The model includes 38 sub-catchments based on the various tributaries as well as the anticipated flow change locations in the hydraulic model. The hydrologic model was developed with existing hydrologic parameters as most of Durham Creek is already developed.

3.7.2 Selection of the Flood Risk Mapping Peak Flows

Flood hazard mapping was completed for the 4%, 2%, and 1% AEP storms and the Regional (Hurricane Hazel) Storm plus the same storms with considerations for climate change. The peak flows recommended for use in the flood risk mapping for Durham Creek are those produced by the hydrologic model for the 6-hour SCS Type II storm distribution and Regional (Hurricane Hazel) Storm. The peak flows recommended for use in the flood risk mapping for the Saugeen River are those produced by the hydrologic model for Regional (Hurricane Hazel) Storm and the AEP flows from the SSFA.

3.7.3 Selection of the Regulatory Flood

Within the jurisdiction of the SVCA, and in keeping with the Technical Guide - River and Stream Systems: Flood Hazard Limit (MNR, 2002), Figure B-1, the subject area is in Zone 1 and therefore the Regulatory Flood is selected as the flood resulting from the Regional (Hurricane Hazel) Storm or the 1% AEP storm, whichever is greater. Based on the results of the hydrologic model results for existing conditions shown in Table 10 and described in Section 3.4, the Hurricane Hazel Storm peak flows will be used for Durham Creek. The Hurricane Hazel Storm peak flows produced higher peak flows, except for Subbasin 137

where the 1% AEP storm produced slightly higher peak flows for the individual basin (but not in the junctions or routing reach). Therefore, it is recommended that the Hurricane Hazel event be used for regulatory purposes for Durham Creek. A summary of which storm and peak flow to be used for regulatory mapping can be found in Table 21.

Location	Regulatory Flood	Peak Flow (m³/s)
Subbasin_134	Regional	2.3
Junction_119	Regional	2.3
Reach_1019	Regional	2.3
Subbasin_135	Regional	3.2
Reach_1020	Regional	4.6
Subbasin_137	Regional	3.2
OurflowDurham	Regional	7.4
Junction 118 (Inflow to Durham Upper Dam)	Regional	276.4

Table 21 – Regulatory Floodplain Mapping Peak Flows

4.0 Hydraulics

4.1 Model Selection

The HEC-RAS (Version 6.4.1) hydraulic model was selected by the project team and the SVCA as the preferred hydraulic model to be used for this project. HEC-RAS is a free hydraulic modeling software developed and maintained by the U.S. Army Corps of Engineers' (USACE) Hydrologic Engineering Centre (HEC) with a long history of use in Canada and internationally. The software can perform hydraulic calculations in one-dimensional steady flow, one-dimensional (1D) unsteady flow, two-dimensional (2D) unsteady flow, and coupled one-dimensional/two-dimensional (1D/2D) flow conditions for a full range of natural and constructed channels. The software is suitable for many applications including floodplain mapping, open channel and hydraulic structure design, dam breach analysis, rain on grid, and sediment transport modeling. HEC-RAS includes built in GIS tools with which a significant portion of the hydraulic model can be developed, and the modeling results viewed.

The following information is required to calculate the input parameters for HEC-RAS to compute water surface elevation and velocity:

- Topographic, bathymetric, and aerial imagery information for the channel and overbanks to define the physical characteristics of the watercourse including slope, length, geometry, and Manning's roughness.
- Bridge, culvert, inline structure, and lateral structure information including geometry, construction material, alignment, and operating rules (if applicable).

- Location and geometry of obstructions to flow such as dwellings and auxiliary structures.
- Peak flows are required for a steady flow model and a hydrograph for an unsteady flow model.
- Flow and water surface elevations of past events for calibration and verification of model parameters.

The objective of the hydraulic model is to compute accurate water surface elevations and floodplain extents for several AEP and Hurricane Hazel storm events through the Town of Durham. Wills reviewed the topography, historic floodplain mapping, available background information from the SVCA, anecdotal information received from residents during the field program, and information gathered during the first Public Information Centre. Wills determined that there are several locations within the study area, including the spill into Durham Creek from the Saugeen River, where flow is two dimensional (2D). Therefore, a 2D unsteady state modeling approach was chosen by Wills based on modeling objectives, available data, topography, and the complexity of flow direction throughout the study area.

- 4.2 Hydraulic Model Development
- 4.2.1 Hydraulic Model Domain

The 2D hydraulic model covers an area of approximately 5.4 km². The model extends for approximately 7.3 km along the Saugeen River, extending from Grey County Road 4 (downstream end of the model) to Concession 2 (upstream end of the model) and includes the anticipated Saugeen River floodplain as well as the Durham Creek study area. The flow length of Durham Creek is approximately 1.5 km. The 2D model extents are shown in Figure 12 with a red outline and hatching.

Figure 12 Saugeen River and Durham Creek Hydraulic Modelling Domain

Lea	end
	00

2D Model Boundary Conditions 2D Flow Area

Data Sources: SWOOP 2020, Grey County							Drawn I
NAC) 1983 UTN	vi Zone 17N	-				Checke
1:15,	,000						Map Da
0	130	260	Meters 520	780	1,040		Project
						V	Map Fil

By:	DG
ed By:	MC
ate:	2/29/24
t Number:	5591
ile Number	5591-Domain

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

P. 705.742.2297 F. 705.748.9944 E. wills@dmwills.com Copyright D.M.Wills 2023

4.2.2 Topographic and Bathymetric Data

Wills used the 0.5 m LiDAR DTM discussed in Section 2.2 as the terrain file for the hydraulic model. The LiDAR DTM does not include points for the ground surface below the water surface. Therefore, it is generally necessary to supplement these areas with surveyed data to create accurate river geometry. Topographic and bathymetry surveys were completed for all hydraulic structures and selected river/creek cross sections in the study area. Bathymetric survey points were taken in-channel up to the top of bank throughout the study area, including in Durham Creek and along the Saugeen River where conditions permitted. The surveyed data between the banks was merged into the terrain in HEC-RAS. Data sources generated by different entities were placed into the same projection and datum for consistency in processing.

Road and rail crossings have one of the most significant impacts on the regulatory floodplain. Considerable backwater conditions may be present upstream of a crossing that is unable to convey the regulatory flow, causing a widespread floodplain. There are a significant number of structures that cross Durham Creek and the Saugeen River. Wills completed field surveys of all hydraulic structures within the study area. Detailed structure data sheets and photos for each crossing are contained in Appendix A.

4.2.3 2D Flow Areas

Wills created a single 2D flow area within the HEC-RAS model, as shown in Figure 12. The default initial cell size used was a 10 m resolution. The 2D area's cell sizes were further refined along the watercourse and linear infrastructure using breaklines and SA/2D Connections enforced as breaklines to ensure cell faces were aligned perpendicular to the major flow paths and the Courant numbers remained below one. Breaklines and refinement regions used near spacing between 3 m and 4 m with near repeats ranging between 1 and 9, depending on the width of the floodplain.

4.2.4 Manning's Roughness Values

Wills imported the SOLRIS landcover GIS layer to HEC-RAS to estimate the initial Manning's roughness values for the 2D domain. The Manning's roughness values were then further refined as needed using aerial imagery, and geospatial refinement regions within HEC-RAS. A summary of the Manning's roughness values for each type of land cover and typical calibration ranges can be found in table in Table 22.

Raster Value			Calibratio	on Range
SOLRIS	Land Cover Description	'n' Standard	Minimum	Maximum
Channel				
Manual Input	Watercourse	0.035	0.025	0.045
Overbank				
90	Forest	0.08	0.04	0.12
91	Coniferous Forest	0.08	0.04	0.12
92	Mixed Forest	0.08	0.04	0.12
93	Deciduous Forest	0.08	0.04	0.12
131	Treed Swamp	0.08	0.04	0.12
135	Thicket Swamp	0.08	0.035	0.07
160	Marsh	0.08	0.035	0.07
170	Open Water	0.035	0.035	0.07
191	Plantation	0.08	0.04	0.12
192	Hedge Rows	0.08	0.04	0.12
193	Agriculture/Tilled	0.055	0.035	0.07
201	Transportation (Asphalt) ¹	0.06	-	-
202	Built Up Area-Pervious	0.045	0.03	0.055
203	Built Up Area-Impervious ¹	0.06	0.03	0.055
204	Aggregate Extraction	0.1	-	-
250	Undifferentiated	0.055	0.035	0.07
Conduit				
Manual Input	Corrugated Steel Pipe	0.024	0.021	0.027
Manual Input	Concrete	0.013	0.011	0.015

Table 22 Mannings Doughnoss V	
Table 22 – Mannings Roughness V	alues

1. Transportation and Built Up-Impervious were lumped into a single composite land cover manning's value which is consistent with published low intensity developed areas from HEC-RAS 2D User Manual.

4.2.5 Hydraulic Structures

Wills completed topographic surveys of all road crossings, several private foot bridges, and three dams along Durham Creek and the Saugeen River. All road crossings were included in the model as SA/2D Connections. Private foot bridge structures without concrete abutments were not included in the model as they are likely to wash away during a high magnitude flood event. Additionally, several of the private foot bridges did not have railings and therefore represent only a small reduction in overall conveyance if they did not fail.

All galvanized guard rails were assumed to be blocked and were therefore modeled as solid portions of the bridge/culvert structure. Structures with concrete parapet walls were modeled as solid portions of the bridge/culvert structure. Steel tube railings with 1 m or greater between vertical posts were assumed to still convey flow and were therefore not included in the bridge/culvert structure. This was assumed as they are significantly less likely to become blocked during a storm. Table 23 shows the typical values for the weir coefficients used by Wills and the calibration range.

	'C' Standard	Calibration Range		
Weir Flow Coefficients	(2D HEC- RAS Default)	Minimum	Maximum	
Broad Crested (i.e., Dams and Road Embankments)	1.66	1.4	1.7	

Table 23 - Weir Coefficients

4.2.6 Obstructions

Generally, there are two methods to include barriers to flow such as dwellings or auxiliary structures in a 2D model. The first method is to raise the terrain of the DTM to include the structure and carefully construct the cells faces for each dwelling. The second method is to significantly increase the Manning's n values for the cells within the building footprint so that water can enter the building footprint (i.e., flood the structure), but it does not account for significant conveyance. Both methods can generally produce accurate mapping if implemented correctly. Method 1 was chosen due to the ease of application and that it does not account for flow entering structures, which is conservative in terms of floodplain limits.

4.2.7 Boundary Conditions

Durham Creek and the Saugeen River required several boundary conditions in HEC-RAS as it is an unsteady model and there are multiple inflow locations. In HEC-RAS the upstream flow hydrograph boundary condition, the internal flow hydrograph boundary condition, and the downstream boundary condition all require an initial estimate of the friction slope. Wills estimated the friction slope to be the average bed slope of the terrain upstream and downstream of the boundary condition. The location, type of boundary condition, and the estimated initial friction slope can be found can be found in Table 24.

Name	Location	Boundary Condition Type	Estimated Initial Friction Slope (m/m)
Saugeen Inflow BC	External	Flow Hydrograph	0.0039
Durham Creek Upstream BC	Internal	Flow Hydrograph	0.008
Durham Creek J20 BC	Internal	Flow Hydrograph	0.003
Durham Creek J21 BC	Internal	Flow Hydrograph	0.0047
Saugeen Outflow BC	External	Normal Depth	0.0023

4.2.8 Flow Data for Hydraulic Model

2D hydraulic models require the use of an unsteady flow regime. This means that an inflow hydrograph time series needs to be defined rather just a constant peak flow that is used in a steady state model. There are two approaches that can be taken to define this hydrograph. The first approach is to define the actual full hydrograph that was computed by the hydrologic model, including rising and falling limbs. The second **approach is to define a "quasi" unsteady hydrograph such that the hydrograph is the** peak flow calculated by the hydrologic model for all ordinates of the time series. The **"quasi" unsteady hydrograph approach was used by Wills for the undertaking the** hydraulic assessment as it most closely mirrors the assumptions used in a steady state model, which is recommended in the Technical Guide – River and Stream Systems: Flooding Hazard Limit (MNR, 2002).

The existing condition flows discussed in Section 3.4.1 were used for the purposes of floodplain mapping for the 4% AEP storm, 2% AEP storm, 1% AEP storm, and the Hurricane Hazel storm as well as the same events with considerations for climate change. The flow data used for inflow hydrographs at the boundary conditions can be found in Table 25 for the standard storm events and in Table 26 for the climate change scenarios. Note these are steady inflow hydrographs and are incremental for Durham Creek.

Hydrologic Element	4% AEP (m ³ /s)	2% AEP (m³/s)	1% AEP (m³/s)	Hurricane Hazel (m³/s)
Saugeen Inflow BC	135.1	154.6	174.4	276.4
Durham Creek Upstream BC	1.1	1.3	1.4	2.3
Durham Creek J20 BC	1.5	1.7	2.0	2.3
Durham Creek J21 BC	2.2	2.6	2.9	2.8

Table 25 - Inflow Hydrographs for Hydraulic Model at Boundary Conditions

Table 26 - Inflow Hydrographs with Climate Change Used for Hydraulic Modeling

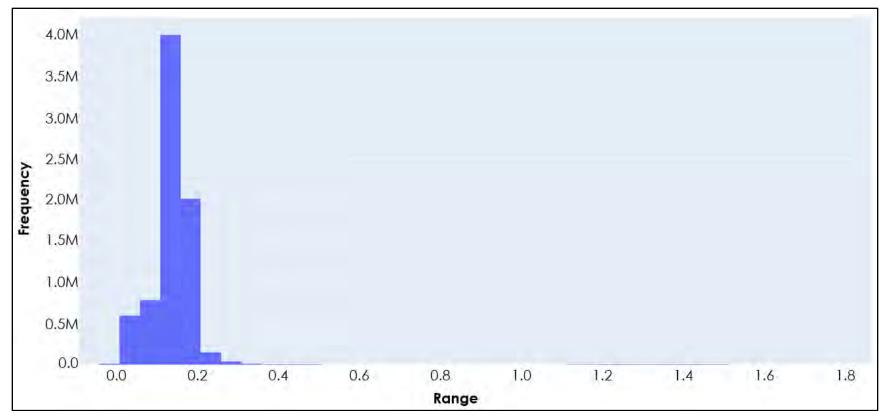
Hydrologic Element	4% AEP Climate Change (m ³ /s)	2% AEP Climate Change (m ³ /s)	1% AEP Climate Change (m ³ /s)	Hurricane Hazel Climate Change (m ³ /s)
Saugeen Inflow BC	135.1	154.6	174.4	276.4
Durham Creek Upstream BC	1.4	1.6	1.8	2.9
Durham Creek J20 BC	2.0	2.3	2.6	3
Durham Creek J21 BC	2.8	3.3	3.7	3.6

4.3 Calibration/Validation

The development of a hydraulic model requires several input parameters. Some of the parameters are based on field measurements (i.e., survey, measurements of bridges and culverts, etc.), while other parameters are left to engineering experience and judgement based on available information (Manning's n, loss coefficients, etc.). For this reason, it is ideal to compare computed water levels to those observed in the field. Model parameters can then be adjusted (calibrated) to replicate the observed water levels more accurately during a historic flood event. Wills completed a background review of all available information and found no documentation of historic flood events within Durham Creek for which to calibrate the hydraulic model. Therefore, typical published parameters were relied upon to produce water surface elevations for the purposes of this study.

4.4 Hydraulic Model Results

Water surface elevations are shown on the engineered floodplain maps in Appendix D and the digital raster outputs which have been provided in an ESRI file geodatabase.


4.5 Sensitivity Analysis

Wills completed a sensitivity analysis of the hydraulic model using the Hurricane Hazel storm profile. In general, the most sensitive parameter within a hydraulic model is **Manning's roughness. Manning's roughness is a highly variable and subjective** parameter that has a significant influence on the computed water surface elevations. Therefore, it is necessary to assess the sensitivity of computed water surface elevations to changes in manning's roughness values. The typical range for sensitivity analysis for floodplain mapping is 75% to 125% of the estimated parameter values (EWRG, 2017). A summary of the results of the sensitivity analysis can be found in the histograms shown in Figure 13 (125% Initial Manning's Roughness) and Figure 14 (75% Initial Manning's Roughness. It is noted that the histograms are based on the raster water surface elevation outputs from HEC-RAS which have a cell size of 0.5 m and not the computational grid.

The results of the sensitivity analysis show that when the Manning's roughness is increased to 125% of the initial roughness, the mean increase in water level is 0.12 m. The results of the sensitivity analysis also show that when the Manning's roughness is decreased to 75% of the initial roughness, the mean decrease in water level is 0.14 m.

Flood Hazard Mapping Report Durham Creek Flood Hazard Mapping Project Saugeen Valley Conservation Authority

Flood Hazard Mapping Report Durham Creek Flood Hazard Mapping Project Saugeen Valley Conservation Authority

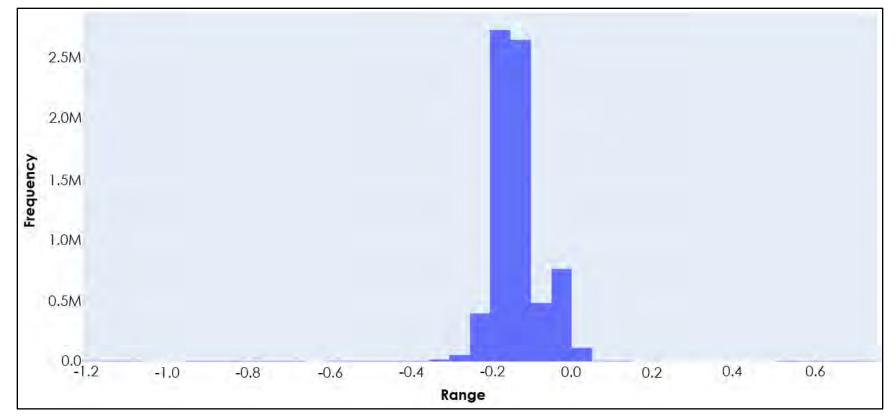


Figure 14 – 75% of Initial Manning's Roughness

5.0 Mapping

5.1 Overview

The regulatory floodplain and flood risk mapping is the final product produced after the water surface elevations are determined using the hydraulic model. Wills utilized the tools within HEC-RAS as well as manual interpretation and refinement in ArcGIS to delineate the floodlines.

The 2020 South Western Ontario Orthophotography Project (SWOOP) Aerial Imagery was used as the background layer for all mapping. The orthoimagery was obtained from the Grey County GIS Server. The LiDAR DTM discussed earlier in the report is the base topographic dataset used for computing inundation boundaries, depths, and water surface elevations. For visualization purposes, contours were created from the DTM at 1.0 m and 5.0 m intervals.

The regulatory floodplain and flood risk maps are provided in Appendix D.

5.2 Two Zone Flood Hazard Concept

The Municipality of West Grey has adopted a two zone flood hazard policy approach for Durham Creek. The two zone approach recognizes the fact that the flood hazard can often be divided into two zones, the floodway, and the flood fringe. The floodway is the inner portion of the flood hazard that represents the area required for the safe passage of flood flow and/or the area where flood depth and/or velocities are considered to be such that they pose a potential threat to life and/or property damage. The two zone approach is shown in Figure 15.

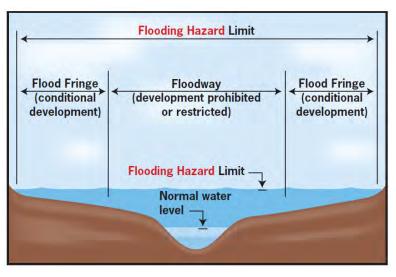


Figure 15 - Two Zone Flood Hazard Approach

The two zone flood hazard limit for Durham Creek is complicated by the presence of a flood dike at the Durham Upper Dam. This dike stops the Saugeen River from spilling into Durham Creek. The Technical Guide – River and Stream Systems: Flooding Hazard Limit

(MNR, 2002) states that the area behind a dike is regarded as flood fringe if the dike is high enough to provide protection against the Regional flood. The dike at the Durham Upper Dam has a freeboard of approximately 0.50 m during the Regional flood; therefore, the area that the dike protects from flooding can be considered as flood fringe.

In summary, the outer extent of the flood hazard limit is defined as the Regional flood limit for Durham Creek plus the Regional flood limit for the case where the dike at the Durham Upper Dam is not present. The floodway is defined by looking at a combination of the depth (>0.8 m), velocity (>1.7 m/s), and depth x velocity (>0.40 m²/s).

5.3 Floodline Delineation

RAS Mapper, a tool within HEC-RAS, was used to generate the floodlines for the regulatory floodplain and flood risk mapping. RAS Mapper projects the hydraulic model results across the terrain data (LiDAR DEM) to create the floodlines for the chosen plans. The computed floodlines are a reasonable estimate; however, further evaluation and revisions to correct abnormalities is generally required. Manual interpretation and refinement were completed within ArcGIS to ensure all floodlines conform to the principles of hydraulic engineering. Areas shown as inundated that are not hydraulically connected were excluded from the floodplain. Furthermore, high points of land that are not subject to flooding during a regional event but are surrounded by flooded land are within the limits of the delineated flood line. Some engineering judgement was used for properties within an "island" that were clearly built to be higher than the floodplain.

The following summarized the manual adjustments of interest that were made to create the floodlines for Durham Creek:

- All islands within the floodplain were removed.
- Areas resembling an island connected only by a narrow strip of land were removed and considered to be within the floodplain.
- Connection of the floodlines were made for any overtopping hydraulic structures.
- The floodway was defined using GIS tools and the depth, velocity, and depth x velocity HEC-RAS outputs.

The results of the floodline delineation are shown on the regulatory floodplain and flood risk maps in Appendix D.

- 5.4 Floodplain Mapping Results
- 5.4.1 Floodline Comparison

There are no existing floodlines for Durham Creek with which to compare the current Durham Creek floodlines. Therefore, Wills compared the results of the 1983 Latham Group floodplain mapping for the Saugeen River to the results of Wills 2D hydraulic model for the Saugeen River. The two results compare reasonably well; however, the

1983 floodlines show more flooded area in most places. These differences are most likely attributable to the differences in topographic data sources, and changes in the modelling approach.

5.4.2 Roadway Overtopping

There are several culvert structures along Durham Creek that overtop during the modelled flood events. Will identified these culverts by analyzing the results of the HEC-RAS model. The results of the analyses for each event were extracted from HEC-RAS and input into a Microsoft Excel spreadsheet where they were formatted for input into the report.

The results of the analyses are included in Table 27 and in Table 28 for the climate change scenarios. There are a number of culverts that overtop under the various scenarios, including many where the Maximum Overtopping Depth exceeds 0.30 m (the maximum allowable depth for safe access). These locations/events are highlighted in red/bold in Tables 27 and 28. The Overtopping Velocities are generally within the erosion threshold for gravel substrates, which is in the range of 0.75 m/s to 1.2 m/s based on Design Chart 2.17 from the MTO Drainage Management Manual (MTO, 2023). The locations/events that exceed 0.75 m/s are shown in orange/bold in Tables 27 and 28 and the locations/events that exceed 1.2 m/s are highlighted in red/bold in Tables 27 and 28. Locations where the erosion threshold of 1.2 m/s is exceeded have an increased risk of erosion during overtopping.

5.4.3 Impacts to Buildings

There are several buildings included in the floodplain for the various flood events. These buildings were identified by Wills through an analysis completed in ArcGIS using the outputs from the HEC-RAS model, DTM, building footprints, and Grey County parcel fabric. Wills related the building footprints with the parcel fabric so that each building had a 911 address associated with it. The minimum DTM elevation, maximum water surface elevation, and maximum flood depth were then determined for each building.

The results of the analyses are included in Table 29 for the regular flood events and Table 30 for the climate change events. In total, there are approximately 174 buildings that could be flooded under different scenarios. Of the 174 buildings that that could be impacted, approximately 58 of them are only flooded in the case where the dike at the Durham Upper Dam remains in place.

		25-Year		50-Year				100-Year			Hazel			Hazel No Di	ke
Street	Flow (m ³ /s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)	Flow (m³/s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)									
Lambton Street East	1.1	0.30	0.56	1.3	0.34	0.58	1.4	0.36	0.60	2.3	0.38	0.65	160.7	1.27	2.37
Kincardine Street North	2.6	0.61	0.25	2.4	0.65	0.37	2.8	0.69	0.28	4.0	0.78	0.32	175.9	1.78	1.52
Elgin Street South	4.8	0.35	0.47	5.6	0.37	0.50	6.3	0.39	0.52	7.4	0.41	0.54	163.0	1.25	2.22
Saddler Street East	4.8	0.84	0.58	5.6	0.89	0.57	6.3	0.92	0.59	7.4	0.93	0.65	162.9	2.18	2.04
Albert Street South	4.4	0.89	0.32	5.2	0.93	0.34	5.9	0.97	0.35	6.7	1.01	0.36	150.9	1.84	1.94
Highway 6	4.8	0.64	0.24	5.6	0.69	0.27	6.3	0.72	0.29	7.4	0.77	0.31	151.3	1.93	1.44
Queen Street South	4.7	0.97	0.62	5.5	1.09	0.71	6.3	1.20	0.79	8.7	1.56	1.07	159.6	1.52	1.40

Table 27 - Roadway Overtopping

Table 28 - Roadway Overtopping Climate Change

		25-Year CC			50-Year CC			100-Year CC			Hazel CC	
Street	Flow (m ³ /s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)	Flow (m ³ /s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)	Flow (m ³ /s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)	Flow (m ³ /s)	Maximum Overtopping Velocity (m/s)	Maximum Overtopping Depth (m)
Lambton Street East	1.4	0.41	0.60	1.6	0.35	0.62	1.8	0.37	0.64	2.9	0.44	0.70
Kincardine Street North	3.4	0.69	0.28	3.9	0.73	0.30	4.4	0.77	0.31	5.9	0.86	0.35
Elgin Street South	6.2	0.40	0.52	7.2	0.41	0.54	8.1	0.43	0.57	9.5	0.47	0.60
Saddler Street East	6.2	0.92	0.62	7.2	0.95	0.61	8.1	0.99	0.63	9.5	1.03	0.69
Albert Street South	5.8	0.96	0.35	6.8	1.01	0.36	7.7	1.04	0.37	9.1	1.08	0.40
Highway 6	6.2	0.72	0.28	7.2	0.76	0.31	8.1	0.80	0.33	9.5	0.84	0.36
Queen Street South	6.1	0.99	0.64	7.1	1.08	0.71	8.1	1.18	0.79	10.8	1.54	1.08

Table 20 – Impacts to	Buildings and Structures
$1 a \nu l \in Z_7 = III \nu a \cup l \in U$	buildings and structures

	Lowest DTM	25-	Year	50-	Year	100	-Year	Ha	azel	Hazel	No Dike
Address	Elevation (m)	WSE (m)	Depth (m)								
592 Lambton St East	348.73									349.71	0.76
573 George St East	347.53									349.21	1.39
561 George St East	348.33									348.80	0.51
165 Cross St S	343.20	344.56	0.23	344.56	0.23	344.57	0.24	344.55	0.25	344.69	1.44
429 Lambton St E	343.02									344.28	1.43
421 Lambton St E	343.96									344.28	0.42
155 Kincardine St S	342.86									344.28	1.41
175 Kincardine St S	342.93									344.14	1.16
176 Kincardine St S	341.27	342.36	0.37	342.39	0.39	342.41	0.41	342.45	0.46	343.75	1.65
180 Kincardine St S	340.44	342.37	0.45	342.39	0.47	342.41	0.49	342.46	0.53	343.78	2.19
196 Kincardine St S	342.07									343.80	0.93
154 Kincardine St S	340.69	340.75	0.07	340.78	0.10	340.84	0.13	342.32	0.33	343.80	2.01
122 Kincardine St S	341.75									343.85	1.23
479 Lambton St E	342.44	342.72	0.32	342.75	0.34	342.77	0.36	342.82	0.41	344.48	2.04
493 Lambton St E	344.32									344.65	0.28
489 Lambton St E	343.94									344.57	0.48
582 Cedar Ln	344.45									344.43	0.08
580 Cedar Ln	343.74									344.43	0.64
380 Saddler St E	341.49									343.36	1.24
368 Saddler St E	340.70	340.91	0.10	340.97	0.12	340.99	0.15	340.99	0.18	342.62	1.94
344 Saddler St E	340.40	340.85	0.32	340.96	0.34	341.05	0.40	341.04	0.43	342.61	2.14
191 Elgin St S	340.56	340.84	0.19	340.86	0.22	340.86	0.24	340.83	0.27	342.47	1.94
187 Elgin St S	340.18	340.71	0.53	340.74	0.56	340.77	0.59	340.81	0.62	342.66	2.32
175 Elgin St S	340.40	340.73	0.25	340.77	0.28	340.80	0.30	340.84	0.34	342.73	2.14
169 Elgin St S	340.75	340.73	0.02	340.77	0.06	340.80	0.08	340.85	0.12	342.70	1.97
157 Elgin St S	340.25	340.74	0.57	340.78	0.60	340.81	0.63	340.85	0.67	342.69	2.51
209 Garafraxa St N	338.52	342.02	3.38	342.34	3.70	342.63	3.96	344.28	5.58	341.58	3.01
144 Garafraxa St N	340.06	340.67	0.55	340.86	0.76	341.06	0.97	343.49	2.26	340.51	0.40
120 Garafraxa St N	341.06			340.82	0.03	341.04	0.02	343.43	1.11		
108 Garafraxa St S	342.45							343.14	0.38		
115 Lambton St W	342.54							342.92	0.34		
169 Lambton St W	342.30							342.72	0.18		
118 Queen St S	341.97							342.56	0.13		
124 Garafraxa St S	341.48		1					342.59	0.39		
157 Garafraxa St S	342.77							343.72	0.79		
137 Garafraxa St S	343.10		1					343.43	0.34		
105 Garafraxa St S	343.15		1				1	343.41	0.25		

	Lowest DTM	25-`	Year	50-	Year	100-	-Year	Ha	azel	Hazel	No Dike
Address	Elevation (m)	WSE (m)	Depth (m)								
150 Mill St East	344.09							344.32	0.24		
119 Garafraxa St S	342.24							343.18	0.12		
156 Garafraxa St S	340.76							341.67	0.22		
157 Garafraxa St S	340.98							341.07	0.09		
168 Garafraxa St S	340.29							340.60	0.34		
168 Garafraxa St S	339.90							340.28	0.18	340.19	0.24
190 Garafraxa St S	339.30							340.03	0.11	340.12	0.32
173 Garafraxa St S	340.30								0.00		
185 Garafraxa St S	340.07							340.29	0.29	340.19	0.10
193 Garafraxa St S	340.17							340.28	0.06	340.20	0.05
197 Garafraxa St S	341.02									340.21	0.03
292 Saddler St E	340.64	340.64	0.03	340.66	0.05	340.69	0.08	340.72	0.11	342.36	1.74
176 Elgin St S	340.65	340.61	0.11	340.64	0.13	340.67	0.16	340.70	0.19	342.42	1.85
190 Elgin St S	340.37	340.61	0.45	340.64	0.48	340.66	0.50	340.70	0.53	342.44	2.26
270 Saddler St E	340.24	340.60	0.64	340.62	0.66	340.64	0.68	340.67	0.71	342.22	2.11
242 Saddler St E	339.94	340.58	0.84	340.60	0.86	340.62	0.87	340.64	0.90	342.15	2.12
193 Albert St S	341.15									341.87	1.00
208 Queen St S	338.04	338.63	0.57	338.72	0.66	338.81	0.74	339.11	1.04	339.21	1.12
212 Queen St S	338.29	338.56	0.43	338.66	0.50	338.74	0.56	339.05	0.69	339.17	0.83
216 Queen St S	338.28	338.41	0.14	338.50	0.22	338.56	0.29	338.80	0.53	339.10	0.82
226 Queen St S	337.83	338.38	0.29	338.43	0.37	338.48	0.43	338.64	0.68	339.07	1.15
248 Queen St S	337.89	338.16	0.19	338.22	0.26	338.27	0.30	338.40	0.44	338.85	0.90
252 Queen St S	337.32	337.75	0.43	337.81	0.49	337.87	0.54	338.06	0.73	338.55	1.20
264 Queen St S	337.29	337.65	0.37	337.71	0.43	337.76	0.48	337.93	0.65	338.33	1.05
270 Queen St S	337.40	337.60	0.21	337.67	0.27	337.72	0.32	337.87	0.48	338.27	0.88
278 Queen St S	336.92	337.36	0.37	337.42	0.43	337.47	0.48	337.64	0.65	338.12	1.12
284 Queen St S	336.68	337.30	0.50	337.36	0.57	337.41	0.61	337.57	0.76	338.04	1.23
292 Queen St S	337.38	337.12	0.14	337.18	0.11	337.22	0.15	337.47	0.27	337.95	0.71
250 South Street W	336.26	337.12	0.91	337.18	0.97	337.22	1.01	337.34	1.12	337.80	1.53
274 South Street W	336.11	337.12	1.05	337.18	1.11	337.22	1.14	337.33	1.25	337.77	1.62
273 Countess St S	337.10	337.10	0.00	337.17	0.03	337.20	0.06	337.31	0.15	337.68	0.52
279 Countess St S	336.92	337.12	0.09	337.17	0.16	337.21	0.19	337.31	0.29	337.69	0.65
285 Countess St S	336.95	337.11	0.13	337.17	0.19	337.19	0.18	337.29	0.29	337.66	0.63
209 Queen St S	338.47	338.73	0.25	338.85	0.35	338.95	0.44	339.32	0.80	339.29	0.77
151 Saddler St W	338.57	338.74	0.19	338.85	0.31	338.96	0.41	339.32	0.77	339.48	0.88
213 Queen St S	338.56			338.60	0.09	338.85	0.17	339.12	0.45	339.42	0.66
217 Queen St S	338.54			338.70	0.02	338.70	0.09	339.06	0.40	339.41	0.86
223 Queen St S	337.52	338.38	0.73	338.46	0.79	338.53	0.85	338.77	1.05	339.31	1.79
231 Queen St S	337.86	338.15	0.29	338.21	0.35	338.27	0.40	338.49	0.61	339.22	1.36

	Lowest DTM	25-`	Year	50-	Year	100-	-Year	Ha	izel	Hazel	No Dike
Address	Elevation (m)	WSE (m)	Depth (m)								
245 Queen St S	337.66	338.08	0.44	338.14	0.50	338.19	0.56	338.40	0.76	339.09	1.45
249 Queen St S	337.65	337.99	0.28	338.04	0.33	338.09	0.38	338.28	0.59	338.93	1.21
253 Queen St S	337.62	337.84	0.15	337.90	0.21	337.95	0.26	338.16	0.46	338.78	1.08
265 Queen St S	337.21	337.68	0.46	337.74	0.52	337.80	0.58	338.00	0.78	338.58	1.35
269 Queen St S	337.62			337.65	0.04	337.70	0.09	337.88	0.26	338.34	0.66
295 Queen St S	336.33	337.34	1.24	337.41	1.29	337.47	1.34	337.64	1.52	338.14	2.01
204 Garafraxa St S	339.02	339.26	0.02	339.27	0.11	339.27	0.21	339.37	0.58	340.17	0.91
218 Garafraxa St S	338.35	338.97	0.27	338.99	0.29	339.00	0.31	339.05	0.40	340.08	1.38
226 Garafraxa St S	337.85	338.95	0.43	338.97	0.46	338.98	0.48	339.00	0.57	339.98	1.45
232 Garafraxa St S	337.69	339.08	1.07	339.09	1.09	339.10	1.11	338.97	1.14	339.97	2.03
232 Garafraxa St S	338.03	339.08	1.07	338.48	0.45	338.49	0.47	338.57	0.59	339.43	1.45
240 Garafraxa St S	337.97	338.27	0.20	338.28	0.21	338.29	0.22	338.36	0.43	340.08	1.27
248 Garafraxa St S	338.39	337.99	0.04	338.07	0.10	338.11	0.07	338.34	0.29	339.44	1.03
266 Garafraxa St S	340.50									340.55	0.05
280 Garafraxa St S	339.26									340.04	0.69
282 Garafraxa St S	340.02									340.49	0.17
176 South Street W	337.76							337.77	0.01	338.08	0.36
293 Queen St S	337.75							337.76	0.01	338.16	0.44
194 South St W	337.23			337.26	0.05	337.36	0.10	337.56	0.27	338.07	0.77
307 Queen St S	336.48	337.14	0.68	337.20	0.74	337.25	0.79	337.39	0.93	337.90	1.44
189 South Street W	336.79	337.14	0.36	337.20	0.43	337.25	0.47	337.39	0.62	337.90	1.12
175 South Street W	337.45							337.38	0.10	337.90	0.62
315 Queen St S	336.42	337.13	0.77	337.20	0.84	337.24	0.88	337.38	1.02	337.90	1.54
321 Queen St S	336.13	337.13	1.03	337.19	1.09	337.24	1.14	337.38	1.28	337.90	1.79
320 Queen St S	336.24	337.13	0.89	337.19	0.96	337.24	1.00	337.38	1.14	337.89	1.62
332 Queen St S	336.68	337.13	0.50	337.19	0.56	337.24	0.61	337.38	0.75	337.89	1.26
333 Queen St S	336.28	337.13	0.97	337.19	1.04	337.24	1.08	337.38	1.23	337.90	1.74
351 Queen St S	336.25	337.13	0.91	337.19	0.98	337.24	1.02	337.38	1.16	337.90	1.68
367 Queen St S	336.11	337.13	1.07	337.19	1.13	337.24	1.18	337.38	1.32	337.91	1.83
373 Queen St S	336.87	337.13	0.29	337.19	0.35	337.24	0.40	337.38	0.54	337.91	1.06
308 Queen St S	336.48	337.13	0.70	337.20	0.76	337.24	0.80	337.39	0.94	337.89	1.42
314 Queen St S	336.50	337.13	0.66	337.19	0.72	337.24	0.76	337.38	0.90	337.89	1.39
249 South Street W	336.18	337.12	0.97	337.18	1.03	337.22	1.07	337.36	1.21	337.84	1.69
293 South Street W	336.34	337.11	0.82	337.17	0.87	337.21	0.90	337.32	1.01	337.78	1.35
348 Queen St S	337.32					337.24	0.01	337.38	0.10	337.89	0.61
356 Queen St S	337.35								0.03	337.89	0.54
374 Queen St S	337.89									337.89	0.07
344 Garafraxa St S	336.69	337.13	0.53	337.19	0.59	337.24	0.64	337.38	0.78	338.06	1.30
378 Garafraxa St S	337.64									338.06	0.64

Address	Lowest DTM	25-Year		50-Year		100-Year		Hazel		Hazel No Dike	
	Elevation (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)
150 Elizabeth St W	337.77									338.06	0.39
132 Elizabeth St W	337.00							337.19	0.19	338.06	1.06
390 Garafraxa St S	336.54							337.19	0.66	338.06	1.52
205 Albert St S	340.43	340.32	0.56	340.34	0.58	340.28	0.56	340.62	0.58	341.80	1.86
233 Saddler St E	340.61	340.57	0.01	340.59	0.03	340.61	0.04	340.63	0.06	342.00	1.26
257 Saddler St E	340.21	340.59	0.36	340.61	0.39	340.63	0.40	340.65	0.43	342.07	1.85
275 Saddler St E	339.93	340.59	0.41	340.61	0.43	340.63	0.45	340.66	0.48	342.15	1.88
204 Elgin St S	340.45	340.62	0.20	340.64	0.22	340.66	0.24	340.69	0.26	342.27	1.82
216 Elgin St S	339.82	340.39	0.31	340.42	0.33	340.45	0.35	340.48	0.39	342.25	1.82
224 Elgin St S	341.16									342.24	1.07
236 Elgin St S	341.70									342.19	0.44
240 Elgin St S	341.84									342.16	0.27
244 Elgin St S	341.55									341.97	0.33
291 Albert St S	339.03									340.01	0.95
289 Albert St S	339.30									340.23	0.81
283 Albert St S	339.66									340.46	0.62
279 Albert St S	339.73									340.60	0.79
271 Albert St S	340.29									340.76	0.40
267 Albert St S	340.60									340.79	0.16
225 Albert St S	341.33									341.62	0.25
219 Albert St S	340.32									341.74	1.23
215 Albert St S	339.98	340.22	0.23	340.25	0.26	340.28	0.29	340.32	0.33	341.81	1.82
211 Albert St S	339.69	340.21	0.45	340.25	0.48	340.28	0.51	340.32	0.54	341.81	1.92
341 Saddler St E	342.01									342.41	0.45
207 Elgin St S	341.16									342.38	1.20
215 Elgin St S	341.76									342.28	0.42
203 Garafraxa St S	337.77	339.63	0.65	339.63	0.68	339.64	0.71	339.64	0.75	341.14	2.33
215 Garafraxa St S	338.60	339.45	0.95	339.48	0.98	339.51	1.01	339.55	1.05	341.17	2.67
229 Garafraxa St S	339.06	339.36	0.30	339.40	0.33	339.42	0.36	339.46	0.39	341.00	1.89
145 Saddler St E	340.01									341.20	1.10
161 Saddler St E	339.85	340.01	0.08	340.01	0.09	340.02	0.09	340.02	0.10	341.27	1.38
173 Saddler St E	339.64	339.95	0.17	339.95	0.18	339.96	0.18	339.94	0.20	341.27	1.66
185 Saddler St E	339.52	340.01	0.20	340.03	0.21	340.04	0.21	340.05	0.23	341.41	1.71
197 Saddler St E	339.65	340.05	0.15	340.06	0.18	340.06	0.21	340.07	0.26	341.54	1.83
210 Albert St S	338.79	339.74	0.69	339.75	0.73	339.76	0.76	339.79	0.80	341.46	2.40
218 Albert St S	339.59			339.77	0.08	339.78	0.10	339.80	0.12	341.45	1.76
222 Albert St S	339.97									341.36	1.20
273 Garafraxa St S	340.27									340.61	0.30
265 Garafraxa St S	340.24		1		1					340.83	0.62

Address	Lowest DTM	25-Year		50-Year		100-Year		Hazel		Hazel No Dike	
	Elevation (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)	WSE (m)	Depth (m)
239 Garafraxa St S	339.95									341.00	1.15
247 Garafraxa St S	340.49									340.98	0.49
269 Garafraxa St S	340.19									340.83	0.51
299 Garafraxa St S	339.66									340.04	0.26
286 Albert St S	339.11									339.92	0.85
290 Albert St S	338.09									339.92	1.70
172 South Street E	338.76									339.92	1.23
172 South Street E	338.93									339.91	1.03
317 Garafraxa St S	339.78									339.90	0.25
345 Garafraxa St S	339.15									339.37	0.15
317 Garafraxa St S	338.68									339.37	0.25
351 Garafraxa St S	338.10									338.63	0.40
377 Garafraxa St S	337.88									338.74	0.34
411 Garafraxa St S	337.14							337.16	0.02	338.06	0.95
268 George St East	344.97							345.66	0.70		
255 South Street E	339.75									339.92	0.16
263 South Street E	339.89									339.92	0.14
280 Albert St S	339.92									339.94	0.10
111 Elizabeth St W	338.08									338.06	0.04
240 Queen St S	337.98	338.29	0.15	338.33	0.19	338.36	0.22	338.45	0.32	338.81	0.68

Table 30 -	Impacts to	Buildings	and Structures	Climate Change	ć
		0		5	

	Lowest DTM	25-Ye	ear CC	50-Ye	ear CC	100-Y	ear CC	Haz	el CC
Address	Elevation (m)	WSE (m)	Depth (m)						
592 Lambton St East	348.73								
573 George St East	347.53								
561 George St East	348.33								
165 Cross St S	343.20	344.57	0.24	344.57	0.24	344.58	0.25	344.59	0.26
429 Lambton St E	343.02							342.86	0.02
421 Lambton St E	343.96								
155 Kincardine St S	342.86							342.86	0.04
175 Kincardine St S	342.93								
176 Kincardine St S	341.27	342.41	0.41	342.43	0.43	342.45	0.45	342.50	0.49
180 Kincardine St S	340.44	342.41	0.48	342.44	0.50	342.45	0.53	342.51	0.59
196 Kincardine St S	342.07								
154 Kincardine St S	340.69	340.84	0.13	340.88	0.17	342.31	0.34	342.34	0.38
122 Kincardine St S	341.75								
479 Lambton St E	342.44	342.77	0.36	342.79	0.38	342.81	0.41	342.87	0.46
493 Lambton St E	344.32								
489 Lambton St E	343.94								
582 Cedar Ln	344.45								
580 Cedar Ln	343.74								
380 Saddler St E	341.49								
368 Saddler St E	340.70	340.98	0.14	341.17	0.19	341.22	0.22	341.28	0.26
344 Saddler St E	340.40	341.05	0.39	341.14	0.43	341.16	0.45	341.25	0.50
191 Elgin St S	340.56	340.86	0.23	340.87	0.26	340.87	0.29	340.87	0.32
187 Elgin St S	340.18	340.77	0.58	340.80	0.62	340.84	0.64	340.88	0.69
175 Elgin St S	340.40	340.79	0.30	340.83	0.33	340.86	0.36	340.91	0.39
169 Elgin St S	340.75	340.80	0.08	340.84	0.12	340.87	0.14	340.91	0.19
157 Elgin St S	340.25	340.80	0.63	340.84	0.67	340.87	0.70	340.92	0.75
209 Garafraxa St N	338.52	342.02	3.38	342.34	3.70	342.63	3.96	344.31	5.58
144 Garafraxa St N	340.06	340.67	0.55	340.86	0.76	341.06	0.97	343.49	2.26
120 Garafraxa St N	341.06			340.82	0.03	341.04	0.02	343.43	1.11
108 Garafraxa St S	342.45							343.14	0.38
115 Lambton St W	342.54							342.92	0.34
169 Lambton St W	342.30							342.72	0.18
118 Queen St S	341.97							342.56	0.13
124 Garafraxa St S	341.48							342.59	0.39
157 Garafraxa St S	342.77							343.73	0.79
137 Garafraxa St S	343.10							343.43	0.34
105 Garafraxa St S	343.15							343.41	0.25

	Lowest DTM	25-Ye	ear CC	50-Y€	ear CC	100-Y	ear CC	Haze	el CC
Address	Elevation (m)	WSE (m)	Depth (m)						
150 Mill St East	344.09							344.32	0.24
119 Garafraxa St S	342.24							343.19	0.12
156 Garafraxa St S	340.76							341.70	0.22
157 Garafraxa St S	340.98							341.65	0.09
168 Garafraxa St S	340.29							340.60	0.33
168 Garafraxa St S	339.90							340.29	0.18
190 Garafraxa St S	339.30							340.03	0.11
173 Garafraxa St S	340.30							340.33	0.00
185 Garafraxa St S	340.07							340.29	0.29
193 Garafraxa St S	340.17							340.28	0.06
197 Garafraxa St S	341.02								
292 Saddler St E	340.64	340.68	0.07	340.71	0.10	340.74	0.13	340.77	0.16
176 Elgin St S	340.65	340.66	0.15	340.69	0.18	340.72	0.21	340.76	0.24
190 Elgin St S	340.37	340.66	0.50	340.69	0.53	340.72	0.55	340.75	0.59
270 Saddler St E	340.24	340.64	0.68	340.67	0.70	340.69	0.72	340.72	0.75
242 Saddler St E	339.94	340.61	0.87	340.63	0.89	340.65	0.91	340.68	0.94
193 Albert St S	341.15								
208 Queen St S	338.04	338.63	0.57	338.72	0.66	338.81	0.74	339.12	1.04
212 Queen St S	338.29	338.56	0.44	338.66	0.30	338.74	0.56	339.05	0.76
216 Queen St S	338.28	338.41	0.14	338.50	0.23	338.57	0.29	338.81	0.53
226 Queen St S	337.83	338.38	0.31	338.43	0.38	338.48	0.44	338.64	0.69
248 Queen St S	337.89	338.16	0.20	338.23	0.26	338.27	0.31	338.41	0.45
252 Queen St S	337.32	337.77	0.45	337.84	0.51	337.89	0.56	338.08	0.74
264 Queen St S	337.29	337.67	0.39	337.73	0.45	337.78	0.50	337.94	0.66
270 Queen St S	337.40	337.62	0.23	337.69	0.29	337.74	0.34	337.89	0.50
278 Queen St S	336.92	337.38	0.39	337.44	0.45	337.49	0.50	337.66	0.67
284 Queen St S	336.68	337.32	0.53	337.38	0.59	337.43	0.63	337.59	0.77
292 Queen St S	337.38	337.14	0.07	337.20	0.13	337.24	0.17	337.49	0.29
250 South Street W	336.26	337.15	0.93	337.20	0.99	337.24	1.02	337.36	1.13
274 South Street W	336.11	337.14	1.07	337.20	1.13	337.23	1.16	337.34	1.26
273 Countess St S	337.10	337.13	0.02	337.19	0.05	337.22	0.07	337.32	0.17
279 Countess St S	336.92	337.14	0.12	337.19	0.18	337.22	0.20	337.33	0.30
285 Countess St S	336.95	337.13	0.16	337.17	0.17	337.20	0.20	337.30	0.30
209 Queen St S	338.47	338.73	0.25	338.85	0.35	338.95	0.44	339.32	0.80
151 Saddler St W	338.57	338.87	0.19	338.87	0.31	338.96	0.41	339.32	0.77
213 Queen St S	338.56	338.83	0.06	338.84	0.09	338.85	0.17	339.13	0.45
217 Queen St S	338.54	338.69	0.03	338.71	0.05	338.72	0.09	339.06	0.41
223 Queen St S	337.52	338.38	0.76	338.47	0.82	338.53	0.87	338.78	1.07
231 Queen St S	337.86	338.19	0.32	338.24	0.38	338.29	0.43	338.51	0.63

	Lowest DTM	25-Ye	ear CC	50-Y€	ear CC	100-Y	ear CC	Haze	el CC
Address	Elevation (m)	WSE (m)	Depth (m)						
245 Queen St S	337.66	338.11	0.47	338.17	0.53	338.22	0.58	338.42	0.78
249 Queen St S	337.65	338.01	0.31	338.07	0.36	338.12	0.41	338.30	0.61
253 Queen St S	337.62	337.87	0.18	337.93	0.23	337.98	0.29	338.18	0.48
265 Queen St S	337.21	337.71	0.49	337.77	0.55	337.83	0.61	338.03	0.80
269 Queen St S	337.62	337.60	0.01	337.67	0.06	337.72	0.11	337.90	0.27
295 Queen St S	336.33	337.37	1.25	337.43	1.31	337.49	1.36	337.66	1.53
204 Garafraxa St S	339.02	339.27	0.02	339.27	0.11	339.27	0.21	339.38	0.58
218 Garafraxa St S	338.35	339.00	0.30	339.02	0.33	339.04	0.35	339.09	0.43
226 Garafraxa St S	337.85	338.98	0.47	339.00	0.50	339.02	0.52	339.05	0.61
232 Garafraxa St S	337.69	339.10	1.10	339.12	1.12	339.14	1.14	339.16	1.17
232 Garafraxa St S	338.03	339.10	1.10	338.50	0.49	338.52	0.51	338.61	0.62
240 Garafraxa St S	337.97	338.29	0.22	338.30	0.23	338.33	0.25	338.42	0.46
248 Garafraxa St S	338.39	338.04	0.07	338.09	0.04	338.15	0.10	338.37	0.32
266 Garafraxa St S	340.50								
280 Garafraxa St S	339.26								
282 Garafraxa St S	340.02								
176 South Street W	337.76							337.58	0.03
293 Queen St S	337.75							337.67	0.02
194 South St W	337.23	337.22	0.01	337.32	0.07	337.39	0.12	337.58	0.29
307 Queen St S	336.48	337.16	0.71	337.22	0.77	337.27	0.81	337.41	0.95
189 South Street W	336.79	337.16	0.39	337.22	0.45	337.27	0.49	337.41	0.63
175 South Street W	337.45							337.40	0.12
315 Queen St S	336.42	337.16	0.80	337.22	0.86	337.26	0.90	337.40	1.04
321 Queen St S	336.13	337.16	1.05	337.22	1.11	337.26	1.16	337.40	1.30
320 Queen St S	336.24	337.16	0.92	337.22	0.98	337.26	1.02	337.40	1.15
332 Queen St S	336.68	337.16	0.52	337.22	0.58	337.26	0.62	337.40	0.76
333 Queen St S	336.28	337.16	1.00	337.22	1.06	337.26	1.10	337.40	1.24
351 Queen St S	336.25	337.16	0.94	337.22	1.00	337.26	1.04	337.40	1.18
367 Queen St S	336.11	337.16	1.09	337.22	1.15	337.26	1.20	337.40	1.34
373 Queen St S	336.87	337.16	0.31	337.22	0.37	337.26	0.41	337.40	0.55
308 Queen St S	336.48	337.16	0.72	337.22	0.78	337.26	0.82	337.40	0.95
314 Queen St S	336.50	337.16	0.68	337.22	0.74	337.26	0.78	337.40	0.91
249 South Street W	336.18	337.14	1.00	337.20	1.05	337.24	1.09	337.37	1.22
293 South Street W	336.34	337.13	0.84	337.19	0.89	337.22	0.92	337.35	1.02
348 Queen St S	337.32					337.26	0.03	337.40	0.12
356 Queen St S	337.35							337.40	0.05
374 Queen St S	337.89								
344 Garafraxa St S	336.69	337.16	0.55	337.22	0.61	337.26	0.66	337.40	0.80
378 Garafraxa St S	337.64								

	Lowest DTM	25-Ye	ear CC	50-Ye	ear CC	100-Y	ear CC	Haze	el CC
Address	Elevation (m)	WSE (m)	Depth (m)						
150 Elizabeth St W	337.77								
132 Elizabeth St W	337.00							337.21	0.21
390 Garafraxa St S	336.54					336.56	0.02	337.21	0.67
205 Albert St S	340.43	340.28	0.56	340.62	0.57	340.64	0.59	340.65	0.60
233 Saddler St E	340.61	340.61	0.04	340.63	0.06	340.65	0.07	340.67	0.10
257 Saddler St E	340.21	340.62	0.40	340.65	0.43	340.67	0.44	340.69	0.47
275 Saddler St E	339.93	340.63	0.45	340.65	0.48	340.67	0.51	340.70	0.55
204 Elgin St S	340.45	340.66	0.24	340.68	0.26	340.70	0.28	340.73	0.30
216 Elgin St S	339.82	340.44	0.35	340.47	0.38	340.51	0.41	340.56	0.45
224 Elgin St S	341.16								
236 Elgin St S	341.70								
240 Elgin St S	341.84								
244 Elgin St S	341.55								
291 Albert St S	339.03								
289 Albert St S	339.30								
283 Albert St S	339.66								
279 Albert St S	339.73								
271 Albert St S	340.29								
267 Albert St S	340.60								
225 Albert St S	341.33								
219 Albert St S	340.32								
215 Albert St S	339.98	340.28	0.28	340.32	0.32	340.35	0.35	340.40	0.40
211 Albert St S	339.69	340.27	0.50	340.31	0.54	340.35	0.56	340.40	0.60
341 Saddler St E	342.01								
207 Elgin St S	341.16								
215 Elgin St S	341.76								
203 Garafraxa St S	337.77	339.64	0.71	339.64	0.74	339.65	0.78	339.66	0.82
215 Garafraxa St S	338.60	339.50	1.00	339.54	1.04	339.57	1.07	339.62	1.12
229 Garafraxa St S	339.06	339.42	0.35	339.46	0.39	339.49	0.41	339.53	0.45
145 Saddler St E	340.01							340.05	0.01
161 Saddler St E	339.85	340.02	0.09	340.03	0.10	340.03	0.10	340.04	0.11
173 Saddler St E	339.64	339.96	0.18	339.96	0.19	339.96	0.20	339.97	0.22
185 Saddler St E	339.52	340.04	0.21	340.05	0.23	340.06	0.24	340.07	0.26
197 Saddler St E	339.65	340.06	0.21	340.07	0.25	340.08	0.28	340.10	0.32
210 Albert St S	338.79	339.76	0.75	339.80	0.79	339.82	0.83	339.85	0.87
218 Albert St S	339.59	339.78	0.10	339.79	0.11	339.81	0.13	339.83	0.17
222 Albert St S	339.97				1				
273 Garafraxa St S	340.27								
265 Garafraxa St S	340.24								

	Lowest DTM		ear CC	50-Y€	ear CC	100-Y	ear CC	Haz	el CC
Address	Elevation (m)	WSE (m)	Depth (m)						
239 Garafraxa St S	339.95								
247 Garafraxa St S	340.49								
269 Garafraxa St S	340.19								
299 Garafraxa St S	339.66								
286 Albert St S	339.11								
290 Albert St S	338.09								
172 South Street E	338.76								
172 South Street E	338.93								
317 Garafraxa St S	339.78								
345 Garafraxa St S	339.15								
317 Garafraxa St S	338.68								
351 Garafraxa St S	338.10								
377 Garafraxa St S	337.88								
411 Garafraxa St S	337.14							337.20	0.03
268 George St East	344.97							345.66	0.70
255 South Street E	339.75								
263 South Street E	339.89								
280 Albert St S	339.92								
111 Elizabeth St W	338.08								
240 Queen St S	337.98	338.29	0.15	338.33	0.19	338.36	0.22	338.46	0.32

5.4.4 Mitigation Options

Wills undertook a high-level assessment of potential flood mitigation options for Durham Creek. The most significant flood mitigation measure, the dike at the Durham Upper Dam, has already been put in place. This dike significantly reduces the amount of flooding in Durham Creek. During the Hurricane Hazel flood, the flow in the Saugeen River is approximately 276.4 m³/s. If the dike were not in place, approximately 160.8 m³/s would spill through Durham Creek. Without the dike in place there would be significant property damages as well as damage to built infrastructure such as roads and culverts. The inspection and maintenance of this dike should be seen as a high priority for the SVCA and Municipality of West Grey.

Another similar flood mitigation measure would be to construct a new flood dike at the downstream end of Durham Creek along the east bank of the Saugeen River to prevent the Saugeen River from backing up into Durham Creek. The new dike would incorporate (and raise) the existing dike at the Durham Lower Dam and would extend downstream to approximately 120 m south of South Street West. The Durham Creek outlet would need to incorporate a flap gate, or manually controlled valve, and possibly a stormwater pumping station to pump water out of Durham Creek and into the Saugeen River when the river is at flood stage. There appears to be sufficient property available to construct the dike and the existing trail could be incorporated into the new dike crest. Additional detailed studies would be required to determine the potential impacts to the remainder of the Saugeen River floodplain and to determine if there is a large enough reduction in the Durham Creek floodplain limits to make the significant cost worthwhile.

During the two Public Information Centers (PICs) that were held in the Town of Durham, many residents provided comments related to flooding during the most frequent flood events (i.e., annual floods). Methods that could be used to reduce flooding during these events include:

- Clear vegetation, sediment, and debris from the Durham Creek Channel. This work would need to incorporate considerations for fisheries and timing windows.
- Expand the capacity of the Durham Creek Channel. This work would need to incorporate considerations for fisheries and timing windows.
- Clear sediment from the existing culverts.
- Consider increasing culvert sizes to the maximum allowable size based on cover and other geometrical restrictions. This could be completed during future road reconstructions or as one-off culvert improvements.
- Expand the capacity of the storm sewer systems on the streets within Durham Creek and potentially construct a larger trunk sewer that could convey a more significant quantity of water directly to the Saugeen River, rather than into Durham Creek.

While these mitigation measures may have a positive impact on drainage during the more frequent flood events (i.e., annually), it is anticipated that they would only have a small impact on the extents of the Regulatory floodplain and floodway.

6.0 Conclusion

The Saugeen Valley Conservation Authority (SVCA), in partnership with the Municipality of West Grey, has recognized the need to develop hydrologic and hydraulic modelling and regulatory flood hazard mapping for Durham Creek in the Town of Durham, Municipality of West Grey, Ontario. There is no existing flood hazard mapping for Durham Creek. The intent of this hydrology report is to provide the hydrologic inputs to the floodplain mapping. This hydrology report included the following key phases:

- Background Data Collection and Review Wills reviewed all available background information provided by the SVCA.
- Site Reconnaissance and Topographic/Bathymetric Survey Wills undertook a site reconnaissance of the entire study reach and collected topographic and bathymetric survey data to define the numerous structures crossing the Saugeen River and Durham Creek and to validate the LiDAR DTM. The quality and accuracy of the DTM was validated.
- Hydrology Study Wills undertook a hydrology study to define the peak flows that would be used in the hydraulic model. The hydrology study was completed using HEC-HMS (Version 4.11). Wills completed a calibration and verification exercise on the hydrologic model for two historic storms. Wills computed flood flows for the 6 hour SCS Type-2 AEP storms and the Regional storm. Wills also computed the peak flows for the same storms while considering the potential impacts of climate change.
- Hydraulics Study Wills undertook a hydraulics study to develop a hydraulic model to compute water surface elevation, velocity, and depth for all parts of the modeling domain for the 4% AEP, 2% AEP storm, 1% AEP storm, Hurricane Hazel storm. The impacts the hydraulics study was completed using HEC-RAS (Version 6.4.1). Wills also computed the hydraulic parameters for the same storms while considering the potential impacts of climate change.
- Development of Regulatory Floodplain and Flood Risk Maps Wills developed regulatory floodplain and flood risk maps using the outputs from the hydraulic modelling to create the final mapping products in ArcGIS.
- Preparation of the Regulatory Floodplain and Flood Risk Mapping Report Wills prepared this report documenting the inputs and results of all analyses associated with the project as well as the results.

Based on the results of the analyses completed, Wills recommends that the SVCA and the Municipality of West Grey update the regulatory floodplain mapping for the Saugeen River and then consider updates to their two zone floodplain planning policies and development approvals processes for both Durham Creek and the Saugeen River together. Additionally, given the potential significant impacts of a failure of the dike at the Durham Upper Dam, the SVCA and Municipality of West Grey should consider the development of an Emergency Preparedness and Response Plan (EPRP) for the structure. The EPRP could be incorporated within the West Grey's existing Emergency Plan or could be a stand-alone document that is coordinated with West Grey's existing Emergency Plan.

Respectfully submitted,

Matt Churly, P.Eng. Senior Project Engineer, Water Resources Engineering

David Green, P.Eng. Group Leader, Dams Engineering, Water Resources Engineering

al l

Sarah Ormel, P.Eng. Project Engineer, Water Resources Engineering

MC/DG/SO

7.0 References

- Hager, W. H. (1987). Lateral Outflow Over Side Weirs. Journal of Hydraulic Engineering, Volume 113, Issue 4.
- MNR. (2002). Technical Guide: River and Stream Systems Flooding Hazard Limit. Ontario.

USACE Hydrologic Engineering Centre (HEC) (2023), HEC-HMS Users Manual V4.11.0

USACE Hydrologic Engineering Centre (HEC) (2023), HEC-HMS Technical Reference Manual

Enviromental Water Resource Group Ltd. (EWRG). (2017) Technical Guidelines for Flood Hazard Mapping

Natural Resources Canada (NRCAN) (2019). Federal Hydrologic and Hydraulic Procedures for Flood Hazard Delineation

Minstry of Natural Resources and Forestry (MNRF)(2019), Southern Ontario Land Resource Information System (SOLRIS) Version 3.0: Frequently asked questions

Minstry of Natural Resources and Forestry (MNRF) (2019), Southern Ontario Land Resource Information System (SOLRIS) Version 3.0: Data Specifications

Minstry of Natural Resources and Forestry (MNRF) (2023), Ontario Digital Terrain Model (LiDAR Dervied) User Guide

Natural Resource Conservation Service (NRCS) (1986), TR-55 - Urban Hydrology for Small Watersheds

Sehgal, K. (2016). A Unified Ontario Flood Method: Regional Flood Frequency Analysis of Ontario Streams Using Multiple Regression. Toronto.

Wanielista, Martin, Robert Kersten, & Ron Eaglin, 1997. Hydrology : Water Quantity and Quality Control, 2nd Edition, Wiley and Sons, Inc., New York, NY.

National Oceanic and Atmospheric Administration (NOAA) (2005) - Unit Hydrograph Technical Manual

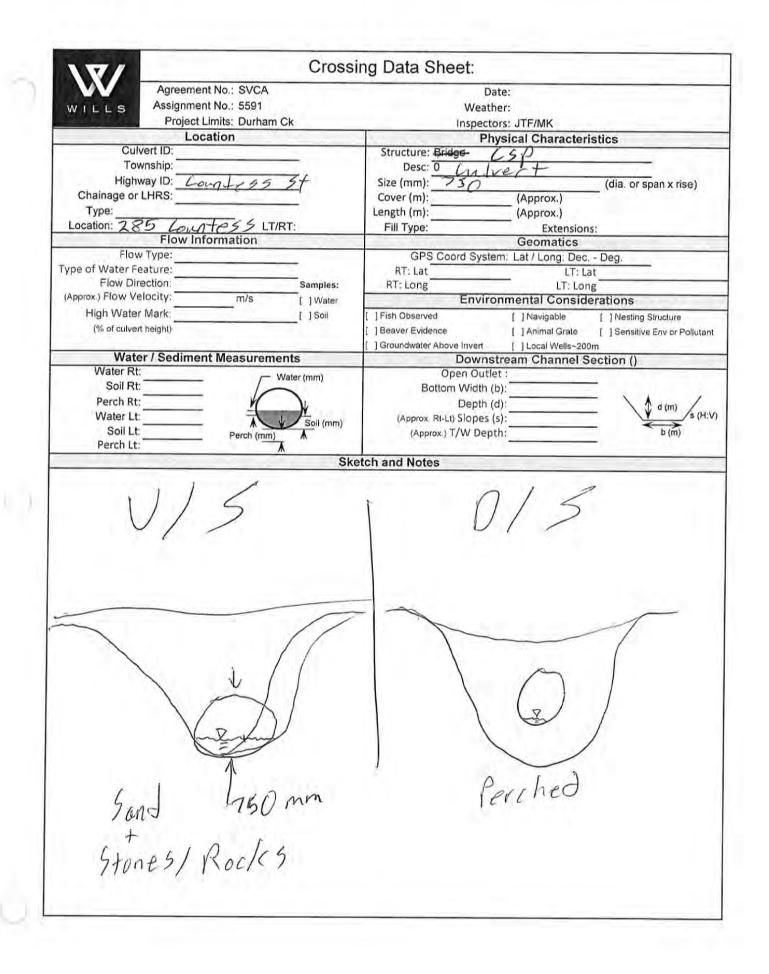
National Resources Conservation Service (NRCS) (2007), Nation Engineering Handbook Part 630 Chapter 16 - Hydrographs

Walter J. Rawls, M. ASCE, Donald L. Brakensiek, and Norman Miller (1983), Green Ampt Infiltration Parameters from Soil Data.

Schroeter & Associates (2006), Long Point Region Watershed Hydrologic Model

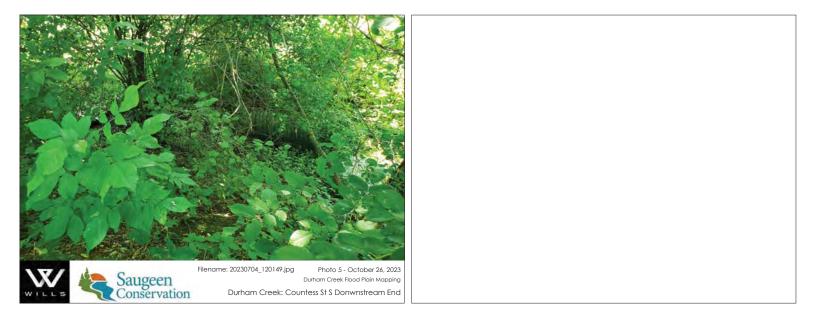
Grand River Conservation Authority (GRCA) (2017) Record Rainfall Flood June 2017, <u>https://www.grandriver.ca/en/our-watershed/Record-Rainfall-Flood-June-</u>2017.aspx#gsc.tab=0

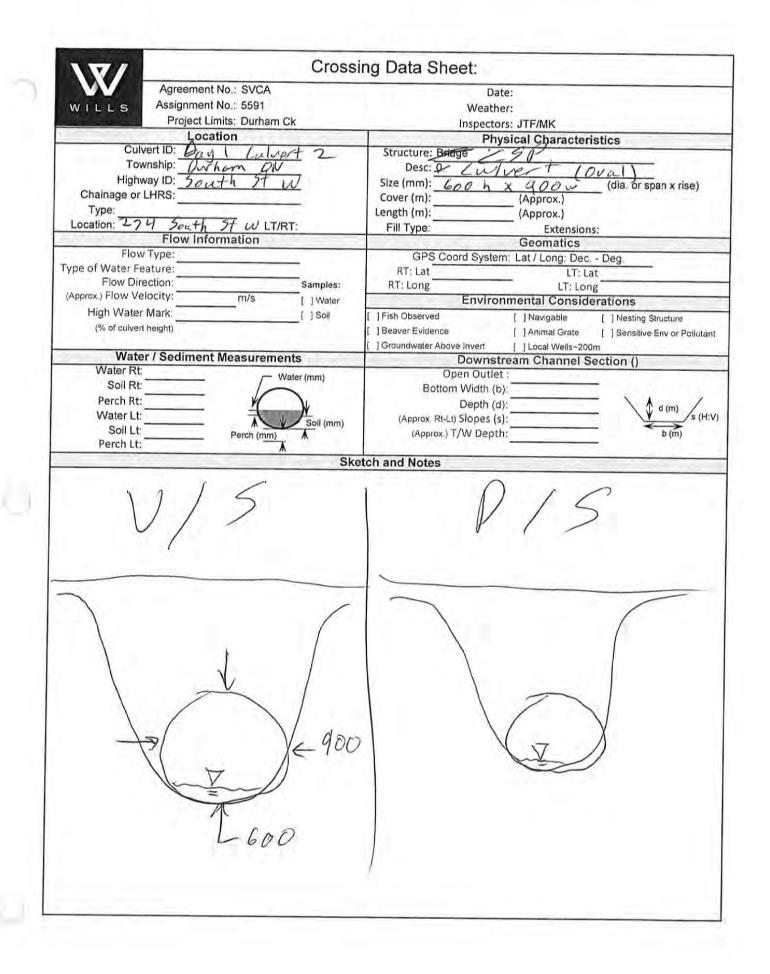
AMEC Limited (2014), July 8th, 2013 Extreme Rainfall Event Summary & Analysis

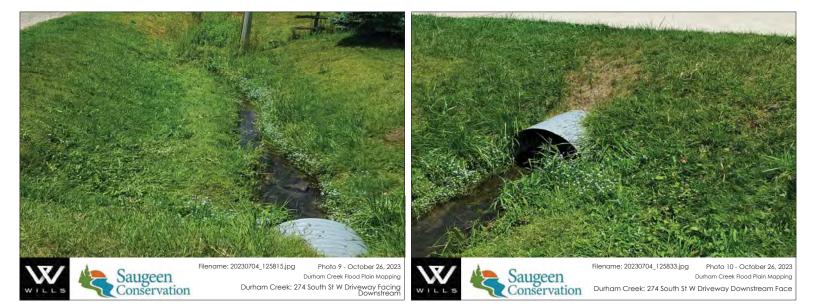

W.E Watt, et. al (1989) Hydrology of Floods in Canada - A Guide to Planning and Design

Ministry of Transportation Ontario (2023) MTO Hydrotechnical Design Charts

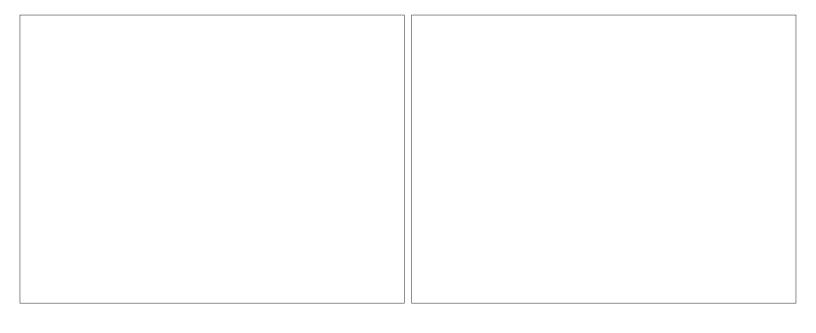
Appendix A


Hydraulic Structure Surveys

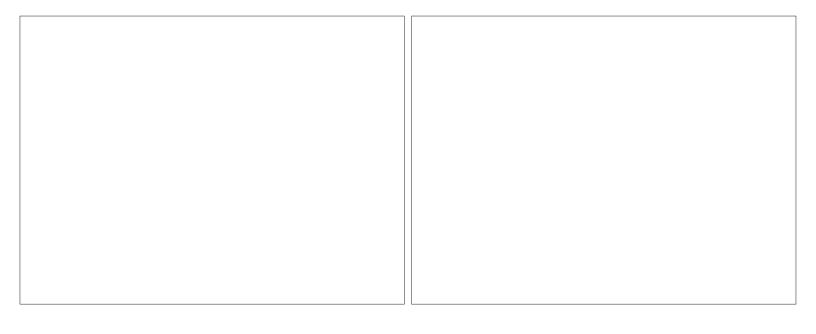




Cius	ssing Data Sheet:
Agreement No.: SVCA Assignment No.: 5591 Project Limits: Durham Ck	Date: Weather: Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Pay Culvert 3 Township: Orhan Highway ID: Orhan Chainage or LHRS: Type: Location: Queen @ South LT/RT:	Structure: Bridge CSP $Cull/P/T$ Desc: 0 30° 5 k P.W $Oval$ Size (mm): (dia. or span x rise) Cover (m): (Approx.) Length (m): (Approx.) Fill Type: Extensions:
Flow Information	Geomatics
Flow Type: Type of Water Feature: Flow Direction: (Approx.) Flow Velocity: High Water Mark: (% of culvert height)	GPS Coord System: Lat / Long: Dec Deg. RT: Lat RT: Long LT: Lat LT: Long Environmental Considerations []Fish Observed []Navigable []Nesting Structure []Beaver Evidence []Animal Grate []Sensitive Env or Pollutant
	[] Groundwater Above Invert [] Local Wells-200m
Water / Sediment Measurements Water Rt: Soil Rt: Water Lt: Soil Lt: Perch Lt: Perch Lt:	Downstream Channel Section () Open Outlet : Bottom Width (b): Depth (d): Open Outlet : (Approx.) T/W Depth:
V / 3	10/5
7	

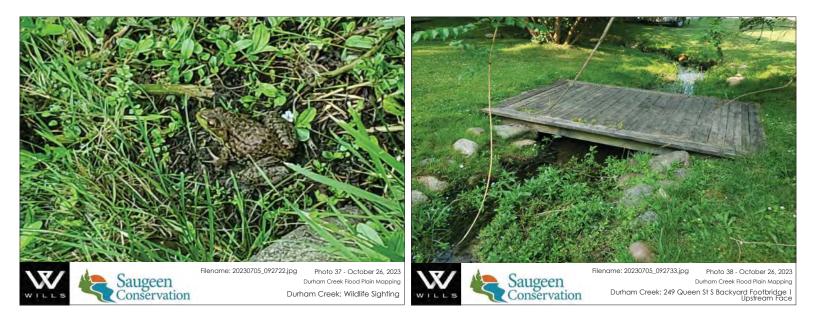


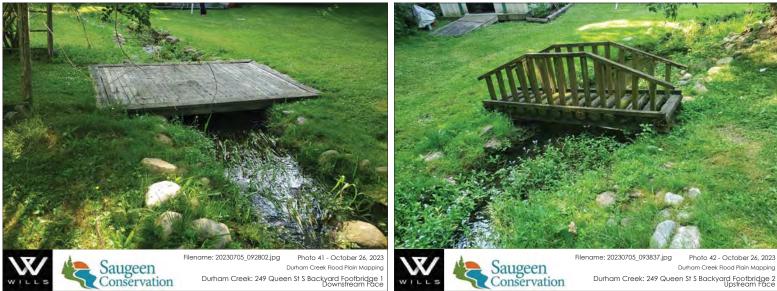
Crossi	ing Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Pari 1 Culure of 4	Structure: Bridge (30 Carling t
Township: Norhan	Desc: & OV W
Highway ID: 12 men StW	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Туре:	Length (m): (Approx.)
Location: 295 River & LT/RT:	Fill Type: Extensions:
Flow Information	Geomatics
Flow Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Feature:	RT: Lat LT: Lat
Flow Direction: Samples:	RT: Long LT: Long
(Approx.) Flow Velocity: m/s [] Water	Environmental Considerations
High Water Mark: [] Soil	[]Fish Observed []Navigable [] Nesting Structure
(% of culvert height)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Polluta
	[] Groundwater Above Invert [] Local Wells~200m
Water / Sediment Measurements	Downstream Channel Section ()
Water Rt: /- Water (mm)	Open Outlet :
Soil Rt:	Bottom Width (b):
Perch Rt:	Depth (d):
Water Lt: Soil (mm)	(Approx. RI-LI) Slopes (s):
Soil Lt: Perch (mm) A	(Approx.) T/W Depth: b (m)
	etch and Notes
Sand 1 grass	



VV/		ssing Data Sheet:	
VV	Agreement No.: SVCA	Date:	
WILLS	Assignment No.: 5591	Weather:	
	Project Limits: Durham Ck	Inspectors: JTF/MK	
	Location	Physical Charac	teristics
Culv	vert ID: 10 1 (1019.999)	Structure: Bridge (Pedestria	n]
Tow	wiship: Dirham	Desc: Desc. Depd	
Chainage or	Nay ID: Queen	Size (mm):	(dia. or span x rise)
Type:	LHRS.	Cover (m): (Approx.) Length (m): (Approx.)	
Location: 2/6	9 Queen LT/RT:	Fill Type: Exten	sions:
Location. 20	Flow Information	Geomatic	
Flow	v Type:	GPS Coord System: Lat / Long:	
Type of Water Fe			T: Lat
Flow Dire			Long
(Approx.) Flow Ve	elocity: m/s []Water	Environmental Con	siderations
High Water		[] Fish Observed [] Navigable	[] Nesting Structure
(% of culver	t height)	[] Beaver Evidence [] Animal Gra	A CONTRACTOR OF A CONTRACTOR O
		[] Groundwater Above Invert [] Local Wells	
Water Rt:	er / Sediment Measurements	Downstream Chann	el Section ()
Soil Rt:	/ vvaler (mm)	Open Outlet : Bottom Width (b):	the Color State
Perch Rt:		Depth (d):	- \ /
Water Lt:		the second se	
Soil Lt:		(Approx.) T/W Depth:	
Perch Lt:			
		Sketch and Notes	
	1111	Sketch and Notes	
		s and sand	

Crossi	ing Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Day Crossing 6+7	Structure: Bridge feat bridge 4
Township: Purham	Descie Concerte
Highway ID: Queen St	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Type:	Length (m): (Approx.)
Location: 265 Aucen LT/RT: Flow Information	Fill Type: Extensions:
Flow Type:	Geomatics
ype of Water Feature:	GPS Coord System: Lat / Long: Dec Deg.
Flow Direction: Samples:	RT; Lat LT: Lat RT: Long LT: Long
(Approx.) Flow Velocity: m/s [] Water	RT: Long LT: Long Environmental Considerations
High Water Mark: [] Soil	
(% of culvert height)	L 1 manual L 1 manual environment
	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutan [] Groundwater Above Invert [] Local Wells~200m
Water / Sediment Measurements	Downstream Channel Section ()
Water Rt: Water (mm)	Open Outlet :
Soil Rt:	Bottom Width (b).
Perch Rt:	Depth (d):
Water Lt: Soil (mm)	(Approx. RI-Lt) Slopes (s):
Soll Lt: Perch (mm)	(Approx.) T/W Depth: b (m)
Perch Lt:	etch and Notes
J. Iscm	Fizem
JAI TA TIO	
1	



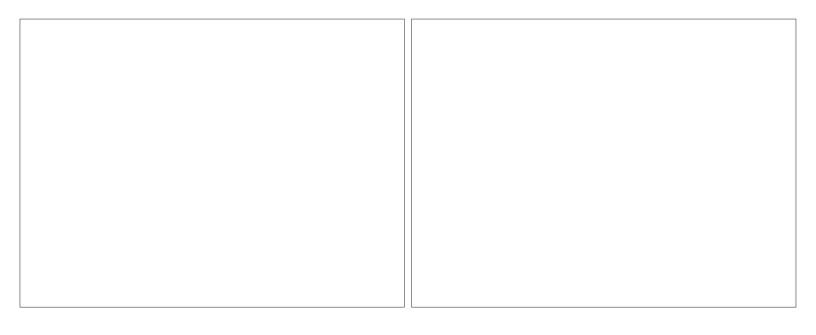

Agreement No: SVGA Assignment No: SSG1 Uccation Culver 1D Cad Township: Characteristics Culver 1D Cad Township: Charace Culv Highway ID: Charange or LHRS; Location: 2 C/3 Flow Information Flow Inform	Cross	ing Data Sheet:
WILLS Asignment No: 5591 Weather: Project Linits: Durham Ck Inspectors: JFAMK Culvert ID: Cast Xing Township: Cast Xing Highway ID: Chainage or LHRS: Cover (m): (Approx.) Location: Z/3 LT/RT: Flow Type: Cover (m): (Approx.) Location: Z/3 LT/RT: Flow Type: GPS Coord System: Lat/Long Dec Deg. True of Water Feature: RT: Lat Flow Type: RT: Long Inspector: IT: Lat Flow Type: It Novgable Inspector: It Novgable Mater Mark: I Soil Vater Rt Vater Redurent Water Rt Water (mm) Soil Rt: Soil (mm) Perch Rt: Water (mm) Soil Rt: Soil (mm) Perch Rt: Soil (mm) Soil Rt: Soil (mm) Perch Rt: Soil (mm) Soil (mm) S	Agreement No.: SVCA	Date:
Project Limits: Durham Ck Inspectors: JTF/MK Location Structure: Bridge Physical Characteristics Township: Arthorne UN Besc: C U2.000 Highway ID: Chainage or LHRS: (dia. or span x rise) Coardin: Cover (m): (Approx.) Location: Cover (m): (Approx.) Location: Cover (m): (Approx.) Location: Cover (m): (Approx.) Flow Information GPS Coord System: Lat / Long. Dec Deg. Flow Type: T1: Lat T1: Lat Flow Water Feature: [1] Soil [1] Fish Observed [1] Annai Crate [1] Sensitive Environmental Considerations Mater / Sediment Measurements Open Outlet: Downstream Channel Section () Deshift (d): Water Rt: Soil Rt: Soil Rt: Depth (d): (d): Soil Rt: Perch (mm) Stetch and Notes Sketch and Notes	Assignment No : EE01	
Location Physical Characteristics Culvert ID: Jack Xing Structure: Bridge Back Jack Ja		
Culvert ID: Cut 1 Xing 2 Township: Cut 2000 Structure: Struc	Location	
Township: Zarkown ON Chainage or LHRS:	Culvert ID: Day 1 Xing 8	
Highway ID: (dia. or span x rise) Chainage or LHRS: (dia. or span x rise) Location: 2 / 3 LT/RT: Flow Information Geomatics Flow Type: RT: Lat Ltr.Lat Flow Direction: Samples: RT: Lat LT: Lat Flow Direction: m/s 1 Water RT: Lat Ltr.Lat High Water Mark: [1 Soil [1 Soil I Tri Lat Itsense favore and the span and	Township: Purham ON	
Chainage or LHRS:	Highway ID:	
Location: 2 2 3 LT/RT: Fill Type: Extensions: Flow Information GPS Coord System: Lat/Long. Dec Deg. RT: Lat IT: Lat Flow Direction: IT: Lat Rt: Lat It: Lat Soil Rt: It: Lat Perch (rmm)	Chainage or LHRS:	
Flow Information Geomatics Flow Type: GPS Coord System: Lat/Long. Dec Deg. RT: Lat T: Lat Flow Direction: Samples: High Water Mark: [] Soil Water / Sediment Measurements Environmental Considerations Water Rt: Open Outlet : Soil Rt: Perch (mm) Perch Rt: Perch (mm) Perch Rt: Perch (mm) Soil Lt Perch (mm) Perch Rt: Soil (mm) Soil Lt Perch (mm) Perch Rt: Soil (mm) Soil Lt Perch (mm) Soil Lt Perch (mm) Perch Rt: Soil (mm) Sketch and Notes	Туре:	Length (m): (Approx.)
Flow Type: GPS Coord System: Lat / Long. Dec Deg. RT: Lat IT: Lat Flow Velocity: m/s High Water Mark: [] Water (Approx.) Flow Velocity: m/s High Water Mark: [] Soil (% of culvert height) [] Soil Water / Sediment Measurements Downstream Channel Section () Water RI: Water (mm) Soil Rt: Perch (mm) Perch Rt: Soil (mm) Perch Rt: Soil (mm) Perch It: Soil (mm) Soil Lt Perch (mm) Perch It: Sketch and Notes	Location: 263 LT/RT:	Fill Type: Extensions:
Type of Water Feature: RT: Lat IT: Lat Flow Direction: m/s I Water (Approx, Flow Velocity: m/s I Water High Water Mark: [] Soil [] Fish Observed [] Navigable [] Navigable (% of cuvent height) [] Soil [] Fish Observed [] Navigable [] Navigable [] Navigable Water / Sediment Measurements Downstream Channel Section () Water Rt: Open Outlet : Soil (Rt: Perch Rt: Depth (d): Water Lt Soil (mm) Depth (d): I (Approx, R+L) Slopes (s): Nol Lt: Perch (mm) K Ketch and Notes		Geomatics
Flow Direction: m/s I Water High Water Mark: [] Soil [] Fish Observed [] Navigable [] Nesting Structure (% of culvert height) [] Soil [] Fish Observed [] Navigable [] Nesting Structure Water / Sediment Measurements Downstream Channel Section () Water Rt: Open Outlet : Soil Rt: Water (mm) Perch Rt: Soil (mm) Soil Lt Perch (mm) Perch Lt: Soil (mm) Soil Lt Perch (mm) Soil Lt Perch (mm) Soil Lt Soil (mm) Vater Above four [] Water (mm) Soil Lt Perch (mm) Yerch Lt: Soil (mm) Sketch and Notes Sketch and Notes		GPS Coord System: Lat / Long: Dec Deg.
(Approx.) Flow Velocity: m/s [] Water High Water Mark: [] Soil [] Fish Observed [] Navigable [] Mesting Structure (% of culvent height) [] Soil [] Fish Observed [] Navigable [] Mesting Structure Water / Sediment Measurements Downstream Channel Section () Open Outlet : Downstream Channel Section () Water Rt: Water (mm) Soil (mm) Bottom Width (b): Depth (d): (Approx.) T/W Depth: f (m) \$ (Approx.) T/W Depth: Deft (m) \$ (m) \$ (h) Soil Lt: Perch tt: Perch (mm) Sketch and Notes Sketch and Notes Sketch and Notes	Type of Water Feature:	RT: Lat LT: Lat
High Water Mark: [] Isoi [] Fish Observed [] Navigable [] INesting Structure (% of culvert height) [] Jeaver Evidence [] Jammal Grate [] Sensitive Env or Pollutant Water / Sediment Measurements Downstream Channel Section () Water Rt: Open Outlet : Soil Rt: Perch Rt: Water Lt: Perch (mm) Soil Lt: Perch (mm) Perch Lt: Sketch and Notes		RT: Long LT: Long
(% of culvert height) [] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutant Water / Sediment Measurements Downstream Channel Section () Water Rt: Open Outlet : Soil Rt: Perch Rt: Water Lt: Perch (mm) Perch Lt: Perch (mm) Perch Lt: Stetch and Notes	(Approx.) Flow Velocity: m/s [] Water	Environmental Considerations
(% of culvert height) [] Beaver Evidence [] Janmal Grate [] Sensitive Env or Pollutant Water 7 Sediment Measurements Downstream Channel Section () Water Rt: Open Outlet : Soil Rt: Bottom Width (b): Perch Rt: Soil (mm) Soil Lt: Perch (mm) Perch It: Perch (mm) Soil Lt: Perch (mm) Perch Lt: Soil (mm) Sketch and Notes	High Water Mark: [] Soil	[] Fish Observed [] Navigable [] Nesting Structure
Uater / Sediment Measurements Water Rt: Downstream Channel Section () Soil Rt: Open Outlet : Perch Rt: Image: Soil (mm) Soil ILt Perch (mm) Perch Lt: Perch (mm) Soil Rt: Image: Soil (mm) Soil ILt Perch (mm) Perch Lt: Perch (mm) Soil Rt: Image: Soil (mm) Soil Rt: Image: Soil (mm) Soil Rt: Image: Soil (mm) Perch Lt: Perch (mm) Sketch and Notes Sketch and Notes	(% of culvert height)	· · · · · · · · · · · · · · · · · · ·
Water / Sediment Measurements Downstream Channel Section () Water Rt:	and the state of the	
Water Rt: Open Outlet : Soil Rt: Bottom Width (b); Water I.t: Bottom Width (b); Soil Lt: Perch (mm) Perch It: Soil (mm) Sketch and Notes	Water / Sediment Measurements	
Soil Rt:	Mater Pt	
Perch Rt: Water Lt Soil Lt Perch (mm) Perch (mm) Sketch and Notes Sketch and Notes	Soil Rt:	
Water Lt: Soil Lt: Perch Lt: Perch Lt: Sketch and Notes Sketch and Notes	Perch Rt:	
Soil Lt: Perch (mm) A (Approx) T/W Depth: b (m)	Water Lt:	
Perch Lt: Sketch and Notes		
	Sk	etch and Notes
Stones and Sand		
Stones and Sand	~~	
Stones and Sand		
Stones and Sand		
Sand		
	Stone s	
	Stones and Sand	

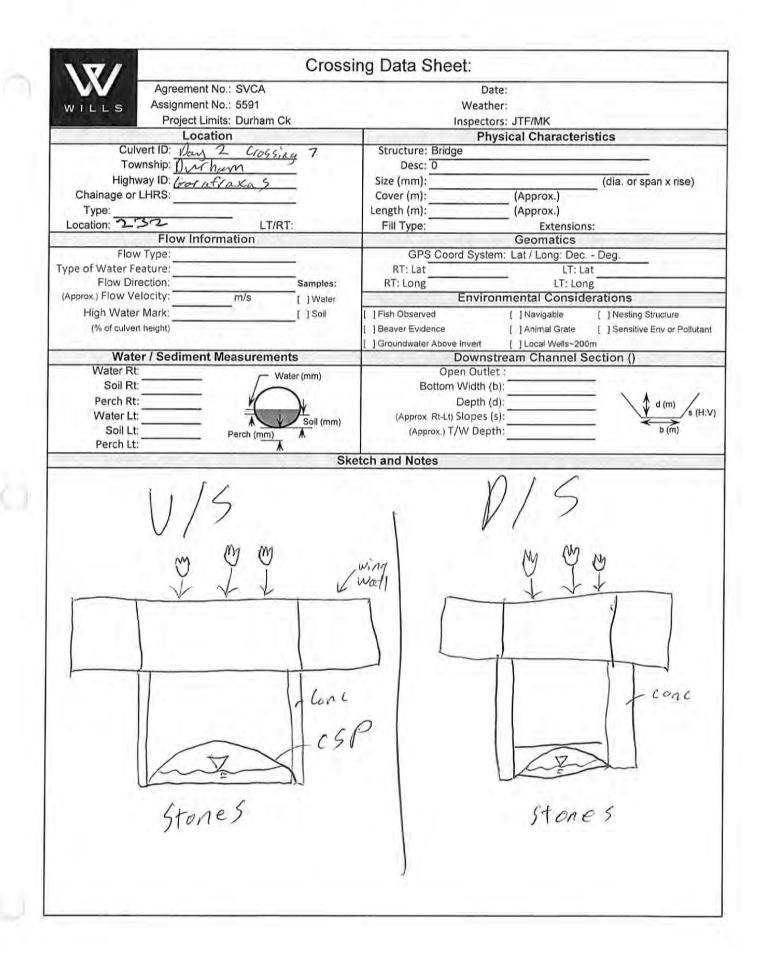
ò

$\nabla \nabla /$	Cross	sing Data Sheet:
	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
Cult	vert ID: Day 2 crassing 122	
	vnship:	Desc. O NOUJEN
Chainage or	vay ID:	Size (mm): (dia. or span x rise)
Type:	LHK3:	Cover (m): (Approx.)
Location: 26	LT/RT:	Length (m): (Approx.)
Location, 20	Flow Information	Fill Type: Extensions: Geomatics
Flow	Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Fe		RT: Lat
Flow Dire	ection: Samples:	RT: Long LT: Long
(Approx.) Flow Ve	locity: m/s []Water	Environmental Considerations
High Water	Mark: [] Soil	[] Fish Observed [] Navigable [] Nesting Structure
(% of culver		[]Beaver Evidence []Animal Grate []Sensitive Env or Polluta
	and the second states a	[] Groundwater Above Invert [] Local Wells~200m
	r / Sediment Measurements	Downstream Channel Section ()
Water Rt:	C Water (mm)	Open Outlet :
Soil Rt:		Bottom Width (b):
Perch Rt: Water Lt:		Depth (d):
Soil Lt:	Soil (mm)	(Approx. RI-Lt) Slopes (s):
Perch Lt:	Perch (mm)	(Approx.) T/W Depth: b (m)
· sron Eu		tetch and Notes
~	1/1/17	
	June -	
		220
		7

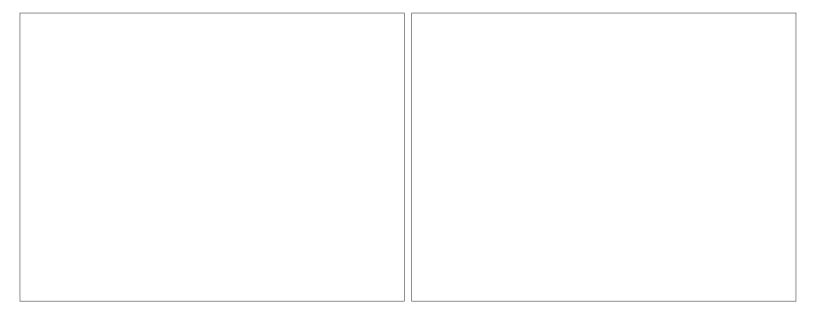
Durham Creek: 249 Queen St S Backyard Footbridge 1 Downstream Face

	Cros	sing Data Sheet:
W	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
Tov	vert ID: Day 2 Crossing 3, 4 vnship: Durham vay ID:	Structure: Bridge Foot + Fonces Desc: 0 0 0 0 Size (mm): (dia. or span x rise)
Chainage or		Cover (m): (Approx.)
Type:	A REAL PROPERTY AND A REAL	Length (m): (Approx.)
Location:	LT/RT:	Fill Type: Extensions:
	Flow Information	Geomatics
	Type:	GPS Coord System: Lat / Long: Dec Deg.
ype of Water Fe		RT: Lat
Flow Dir	1. 14	RT: Long LT: Long
(Approx.) Flow Ve	E Truio.	Environmental Considerations
High Water		[]Fish Observed []Navigable []Nesting Structure
(% of culver	r neight)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutar
Wate	r / Sediment Measurements	[] Groundwater Above Invert [] Local Wells~200m Downstream Channel Section ()
Water Rt		Open Outlet :
Soil Rt		Bottom Width (b):
Perch Rt:		Depth (d):
Water Lt:	<u>M</u>	(Approx. Rt-Lt) Slopes (s):
Soil Lt	Soll (mm)	(Approx.) T/W Depth:
Perch Lt:	Perch (min)	a pay
	- All	ketch and Notes
	Y	3+5 wooden Fance
E	mud + stone 3	ocks rocks - O





Agreement No.: SVCA Assignment No.: 5591 Project Limits: Durham Location rt ID: Day 2 X	Ck	Wea	Date: ather:	
Project Limits: Durham Location rt ID: Day 2 X	Ck	Wea	ather:	
Location Int ID: Day 2 X	Ck	Intere		
ITID: Day 2 XI		inspe	ctors: JTF/MK	
and a Al			Physical Character	istics
atter and a state of the state	Ny 617	Structure: Bridge	+ Fence	
ship: Purham OV		Desc: 0 U	oden	
IN ID: G		Size (mm):		(dia. or span x rise)
HRS:		Cover (m):	(Approx.)	- A cost of the second second
		Length (m):	(Approx.)	
	RT:	Fill Type:		ns:
			Geomatics	
		GPS Coord Sy	stem: Lat / Long: Dec	Deg.
		RT: Lat		
00000	Samples:	RT: Long	LT: Lo	ng
1. Col # 1	[]Water	Envi	ironmental Consid	erations
	[]Soil	[] Fish Observed	[] Navigable	[] Nesting Structure
eight)		[] Beaver Evidence	[] Animal Grate	[] Sensitive Env or Polluta
	All and the second second	[] Groundwater Above Invert	[] Local Wells~20	Om
/ Sediment Measureme	ents		nstream Channel S	
V	Vater (mm)			
W	Y			d (m) /
15	Soit (mm)			- v s (H:
Perch (mm)	A	(Approx.) T/W De	epth:	b (m)
	K	C		
- K	ferie	-		
anud + Sta	Dones	Soft +	H-	
	Flow Information Type: ture: ture: ction: poilty: m/s Aark: reight) 7 Sediment Measureme Perch (mm) G K Perch (mm)	Type: ture: ture: Samples: Solity: Mark: [] Solite Solity: Solity: Perch (mm) Solity: Solit	Flow Information GPS Coord Sy. Type: GPS Coord Sy. ture: RT: Lat ction: Samples: ction: m/s flow Information RT: Lat RT: Lat RT: Long water I) Water I : J Soil I : J Fish Observed I : J Beaver Evidence I : J Groundwater Above Invert I : J Soil I : J Soil Valuer Soil (mm) Perch (mm) Soil (mm) Perch (mm) Soil (mm) K : Fence Generation K : Fence Soil (mm) K : Fence Soil (mm)	Flow Information Geomatics Type: GPS Coord System: Lat / Long: Dec ture: RT: Lat UT: Lor citor: Samples: Environmental Consid Decity: m/s [] Soil I] Fish Observed [] Navigable I ark: [] Soil I] Fish Observed [] Navigable [] Animal Grate I groundwater Above Invert [] Coall dwells-20 Open Outlet: I] Animal Grate I groundwater Above Invert [] Local Wells-20 I] Animal Grate I] Coall Wells-20 Value: Water (mm) Open Outlet: I] Deepth (d): IIII Coall Wells-20 Perch (mm) Soil (mm) Rice of the coall of the coallow of the



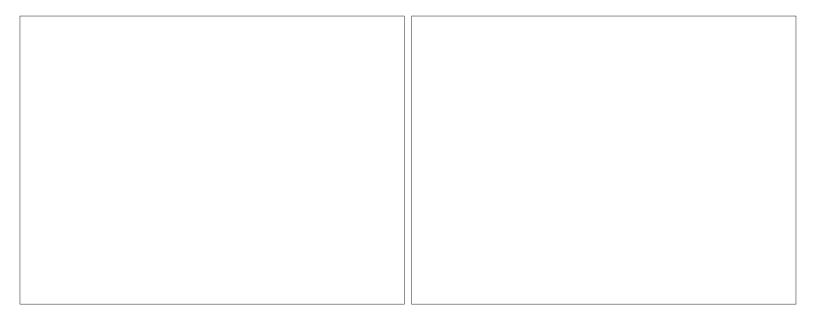
VV/	Cros	sing Data Sheet:
W	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
Cul	vert ID: Daly 2 Crossing &?	
Tov	wiship: Durhan	Descia concrete
High	Nay ID: Gratianis Hungy 4	Size (mm): (dia. or span x rise)
Chainage or	LHRS:	Cover (m): (Approx.)
Type:	and the second se	Length (m): (Approx.)
Location: 23	29A LT/RT:	Fill Type: Extensions:
	Flow Information	Geomatics
	v Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Fe		RT: Lat LT: Lat
Flow Dir	- and a second	RT: Long LT: Long
(Approx.) Flow Ve		Environmental Considerations
High Water	Mark: []Soil	[]Fish Observed []Navigable []Nesling Structure
(% of culver	t height)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutant
	Automation and the second second	[] Groundwater Above Invert [] Local Wells~200m
	er / Sediment Measurements	Downstream Channel Section ()
Water Rt	(mm)	Open Outlet :
Soil Rt		Bottom Width (b):
Perch Rt:		Depth (d):
Water Lt:	A S W Soll (mm)	(Approx Rt-Lt) Slopes (s):
Soil Lt:	Perch (mm)	(Approx.) T/W Depth: b (m)
Perch Lt:	76	Sketch and Notes
F		
J.	rip rop) Dooddedd Glogo

 (\cdot)

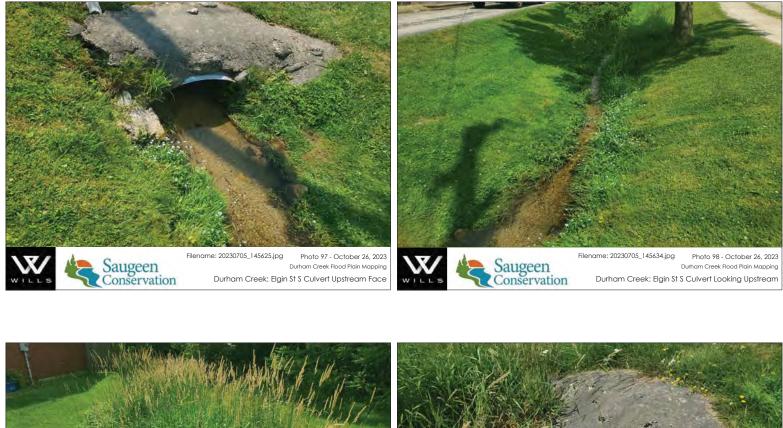
VV/		sing Data Sheet:
VV	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
Culv	ert ID: Day 2 Crossing 10	Structure: Bridge Foot
Tow	nship: Dutham	Desc: 0- 4200 J
Highw	ay ID:	Size (mm): (dia. or span x rise)
Chainage or L	_HRS:	Cover (m): (Approx.)
Type:	the ch	Length (m): (Approx.)
Location: 147		Fill Type: Extensions:
	Flow Information	Geomatics
	Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Fea Flow Dire		RT: Lat LT: Lat
(Approx.) Flow Vel	ocitur	RT: Long LT: Long
		Environmental Considerations
High Water		[] Fish Observed [] Navigable [] Nesting Structure
(% of culvert	neight)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutan
Wata	/ Sodimont Mana	[] Groundwater Above Invert [] Local Wells~200m
Water Rt:	r / Sediment Measurements	Downstream Channel Section ()
Soil Rt:	Water (mm)	Open Outlet :
Perch Rt:	-	Bottom Width (b):
Water Lt:	<u>*()</u>	Depth (d):
Soil Lt:	Soil (mm)	(Approx. Rt-Li) Slopes (s):
Perch Lt:	Perch (mm)	(Approx.) IV V Deptri: D(m)
Perch Lt.	٨	the second se
Pertificit.	A SI	ketch and Notes
Tercin LL.	A SI	ketch and Notes
Percir Lt.	A SI	ketch and Notes
Fercific.	Si Si	ketch and Notes
	A SI	
	A SI	
Fercific.	A SI	ketch and Notes
Fercificit.	A SI	

()

VV/	Cross	ing Data Sheet:
	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
Cu	Vert ID: Oracle 2 - 11	Physical Characteristics
	Ivert ID: $Q_{ay} 2_{j} - 11_{j}$	Desc: 0
	way ID: Albert St	
Chainage or	LHRS:	Size (mm): (dia. or span x rise) Cover (m): (Approx.)
Type: 20		Length (m): (Approx.)
Location: 50		Fill Type: Extensions:
Els:	Flow Information	Geomatics
Type of Water F	v Type:	GPS Coord System: Lat / Long: Dec Deg.
Flow Di		RT: LatLT: Lat
(Approx.) Flow Vi		RT: Long LT: Long
High Wate		Environmental Considerations
(% of culve	rt height)	t Triangable t Triang Sindclure
		[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollut [] Groundwater Above Invert [] Local Wells~200m
Wate	er / Sediment Measurements	Downstream Channel Section ()
Water Rt Soil Rt		Open Outlet :
Perch Rt		Bottom Width (b):
Water Lt	<u> </u>	Depth (d): (Approx. Rt-Lt) Slopes (s):
Soil Lt		(Approx.) T/W Depth:
Perch Lt:		strong and strong stron
11	ines + Sand	weeds



	sing Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Dey 2 -12	Structure: Bridge CIN VENT
Township:	Desc: O- LSP
Highway ID: Sand Jer St	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Type:	Length (m): (Approx.)
Location A Hbert LT/RT: Flow Information	Fill Type: Extensions:
Flow Type:	Geomatics
ype of Water Feature:	GPS Coord System: Lat / Long: Dec Deg.
Flow Direction: Samples:	RT: Lat LT: Lat
(Approx.) Flow Velocity: m/s [] Water	RT: Long LT: Long
High Water Mark: [] Soll	Environmental Considerations
(% of culvert height)	t therease [] heating structure
	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutan [] Groundwater Above Invert [] L acal Wells~200m
Water / Sediment Measurements	1 Jused Head
Water Rt [.]	Downstream Channel Section () Open Outlet :
Soil Rt: Water (mm)	Bottom Width (b):
Perch Rt:	Depth (d)
Water Lt:	(Approx. Rt-Lt) Slopes (s):
Soil Lt: Soil (mm)	(Approx.) T/W Depth:
Perch Lt:	
S	ketch and Notes
	7
(X)	Ð
grass and weeds	mud

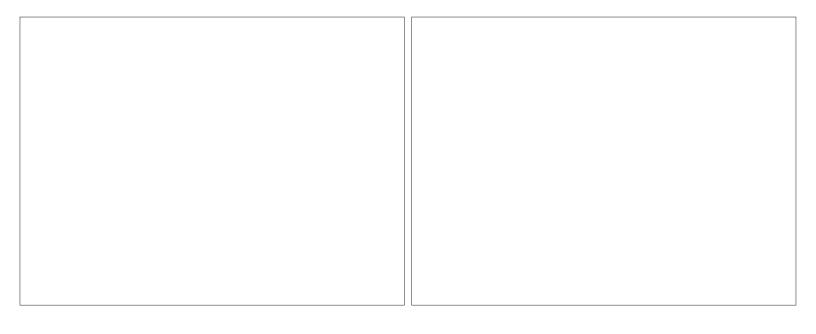

VV/ Cross	sing Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Day 2 -13	Structure: Bridge LSP
Township: Dutham	Desc: of /w/Verts
Highway ID: Jord Jle	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Type:	Length (m): (Approx.)
Location: 2.42 LT/RT:	Fill Type: Extensions:
Flow Information	Geomatics
Flow Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Feature:Samples:	RT: LatLT: Lat
	RT: Long LT: Long
inter [] (vater	Environmental Considerations
	[] Fish Observed [] Navigable [] Nesting Structure
(% of culvert height)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutant
Water / Sediment Measurements	[] Groundwater Above Invert [] Local Wells~200m
Water Rt	Downstream Channel Section () Open Outlet :
Soil Rt: Water (mm)	Bottom Width (b):
Perch Rt:	Depth (d):
Water I t	(Approx. Rt-Lt) Slopes (s):
Soil (mm)	(Approx.) T/W Depth:
Perch Lt: Perch (mm)	
S	ketch and Notes
Kunn /	1 707
CE	

VV/	Cros	ssing Data Sheet:
W	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	
Culv	rent ID: Par 2 -17	Physical Characteristics
Tow	inship: Durham OA/	Desc: 0
	ay ID:	
Chainage or		Size (mm): (dia. or span x rise) Cover (m): (Approx.)
Type:		Length (m): (Approx.)
Location: 18	7 LT/RT:	Fill Type: Extensions:
	Flow Information	Geomatics
Flow	Type:	GPS Coord System: Lat / Long: Dec Deg.
ype of Water Fe		RT: Lat LT: Lat
Flow Dire		
(Approx.) Flow Ve	locity: m/s [] Water	et to be the
High Water		[]Fish Observed [] Navigable [] Nesting Structure
(% of culvert	A = 2 = 2 = 2	[]Beaver Evidence []Animal Grate []Sensitive Env or Pollutani
		[] Groundwater Above Invert [] Local Wells~200m
Wate	r / Sediment Measurements	Downstream Channel Section ()
Water Rt:	Water (mm)	Open Outlet :
Soil Rt:		Bottom Width (b):
Perch Rt:	<i>M</i>	Depth (d):
Water Lt:	Soil (mm	(Approx. Rt-Lt) Slopes (s):
Soil Lt:	Perch (mm)	(Approx.) T/W Depth: b (m)
Perch Lt:	A	
$\overline{\left\langle \right.}$		
	A Z	V ZJ

()

	ssing Data Sheet:
Agreement No.: SVCA	Date:
Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
rt ID: Paul 7 -15	Structure: Bridge / G
ship:	Desc: D Cinfuer (
iy ID:	Size (mm): (dia. or span x rise)
IRS:	Cover (m): (Approx.)
	Length (m): (Approx.)
LT/RT:	Fill Type: Extensions:
Flow Information	Geomatics
	GPS Coord System: Lat / Long: Dec Deg.
	RT: Lat
city: m/s []Water	
	[]Fish Observed []Navigable []Nesting Structure
	[]Beaver Evidence []Animal Grate []Sensitive Env or Pollutant
a the second second second second	[] Groundwater Above Invert [] Local Wells~200m
/ Sediment Measurements	Downstream Channel Section ()
/ Water (mm)	Open Outlet :
	Bottom Width (b):
<i>M</i>	Depth (d):
Soil (mm)	(Approx. RI-Lt) Slopes (s):
Perch (mm)	(Approx.) T/W Depth: b (m)
*	
55 + weeds Mud	Roches
	Location art ID:


ò


VV/	Cros	ssing Data Sheet:		
	Agreement No.: SVCA	Dat	e:	
WILLS	Assignment No.: 5591	Weathe	er:	
The second second	Project Limits: Durham Ck	Inspecto	rs: JTF/MK	
0.1	Location		sical Characteristics	
	vert ID:	Structure: Bridge	whent	
	way ID:	Desc: 0 25	P Oriven	a. or span x rise)
Chainage or		Size (mm): Cover (m):	(di	a. or sban x rise)
Type:	2000	Length (m):	(Approx.) (Approx.)	
Location: 4	79 LT/RT:	Fill Type:	Extensions:	
	Flow Information		Geomatics	
	v Type:	GPS Coord System	n: Lat / Long: Dec Dec	1.
Type of Water F	eature:	RT: Lat	LT: Lat	
Flow Dir		RT: Long	LT: Long	
(Approx.) Flow V			nmental Consideration	ons
High Wate		[] Fish Observed		Vesting Structure
(% of culve	n neight)	[] Beaver Evidence		Sensitive Env or Polluti
Wate	er / Sediment Measurements	[] Groundwater Above Invert	[] Local Wells~200m	- 0
Water Rt		Open Outlet	ream Channel Sectio	n ()
Soil Rt		Bottom Width (b		
Perch Rt		Depth (d		\ A dim /
Water Lt	A Soil (mm)	Marine Brite Classes In		V a (m) s (t
Soil Lt	Perch (mm)	(Approx.) T/W Depth	14	b (m)
Perch Lt		Sketch and Notes		
	\circ_{l}			
	(attails			
		1. I	Brush and Lattail)

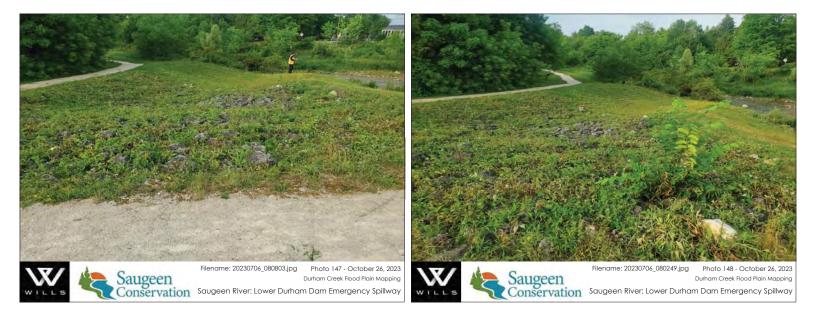
17/		ion Worksheet: 17+592	1
WILLS	Agreement No.: Porham CK/Savge Assignment No.: 559 - Project Limits:	Weather: SUNNY W/C	23 louds
		Inspectors: MC/MK	tion
Culver	Location	Physical Characteris Material: Bod a Single Spore	
	him Della the state of the stat	Material: Bridge, Single SPar	
Listeres	ship: Durham J GreyRD		(dia an an an u tina)
Highway	/ ID.	Size (mm): N/A	_ (dia. or span x rise)
Chainage or LH		Cover (m): $\sqrt[M]{A}$ (Approx.) Length (m): 11.5∞ (Approx.)	
Type: Centrel			
Location: Main	LT/RT: Flow Information	Fill Type: Extensions Geomatics	
Elow T		Geomatics	
Type of Water Feat	pe: Lam U.S, Turb D.S	RT: Lat	
		RT: Long	
(Approx.) Flow Velo	200111 101001	Environmental Conside	rations
High Water M			[] Nesting Structure
	· · · · · · · · · · · · · · · · · · ·		
(% of culvert he	sight)		[] Sensitive Env or Pollutant
Water	Sediment Measurements	[] Groundwater Above Invert [] Local Wells~200 Downstream Channel Se	
Water Rt:		Open Outlet : Yes	
Soil Rt:	Water (mm)	Bottom Width (b): Ves-	
			- \ /
Perch Rt:	<u>'()</u>	Depth (d): Vanice (Approx. Rt-Lt) Slopes (s):	- 🗘 d (m) /s (H:V)
Water Lt:	Soil (mm)		
Soil Lt:	Perch (mm)	(Approx.) T/W Depth:	-
Perch Lt:	٨	Notes	
	41.50		
Foreit	145° 38.5M	H.18 H.18 H.18 H.18 H.18 H.18 H.18 H.18	ine W/Abutment O°
	Aerial Vie	wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	

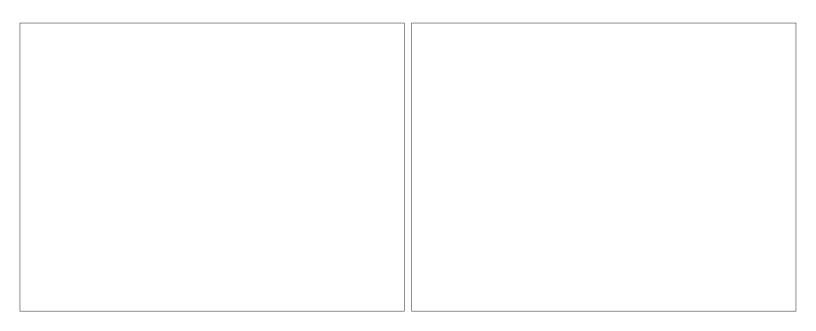
Filename: PXL_20230914_161940372.jpg Saugeen Conservation Saugeen Ri

72.jpg Photo 9 - September 14, 2023 Durham Creek Flood Plain Mapping Saugeen River: Grey County Road 4 Bridge Looking Downstream

Filename: PXL_20230914_162306638.MP.jpg Photo 10 - September 14, 2023 Durham Creek Flood Plain Mapping Saugeen River: Grey County Road 4 Bridge Downstream Face

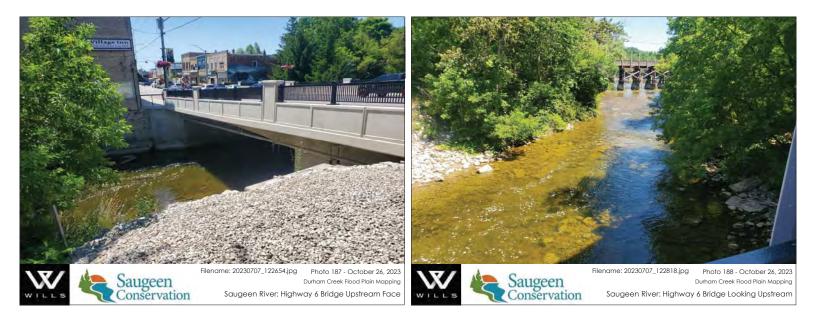
Crossi	ng Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Day 3 Dam (Structure: Bridge Dam
Township: Durchum	Desc: I walleway along top of long Aruce
Highway ID: Comtess	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Туре:	Length (m): (Approx.)
Location: 185 LT/RT:	Fill Type: Extensions:
Flow Information	Geomatics
Flow Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Feature:	RT: Lat LT: Lat
Flow Direction: Samples:	RT: Long
(Approx.) Flow Velocity: m/s [] Water	Environmental Considerations
High Water Mark: [] Soil	[]Fish Observed [] Navigable [] Nesting Structure
(% of culvert height)	[]Beaver Evidence []Animal Grate []Sensitive Env or Pollutant
	[] Groundwater Above Invert [] Local Wells~200m
Water / Sediment Measurements	Downstream Channel Section ()
Water Rt: Water (mm)	Open Outlet :
Soil Rt:	Bottom Width (b):
Perch Rt:	Depth (d):
Water Lt:	(Approx. Rt-Lt) Slopes (s):
Soil Lt: Perch (mm)	(Approx.) T/W Depth:
Perch Lt:	
Ske	tch and Notes
VIS Chain Link Fence Wing Warrs Hop logs Rocks	XXXXXX



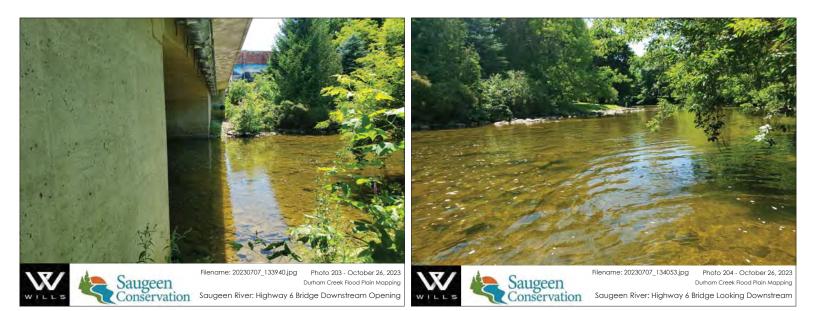


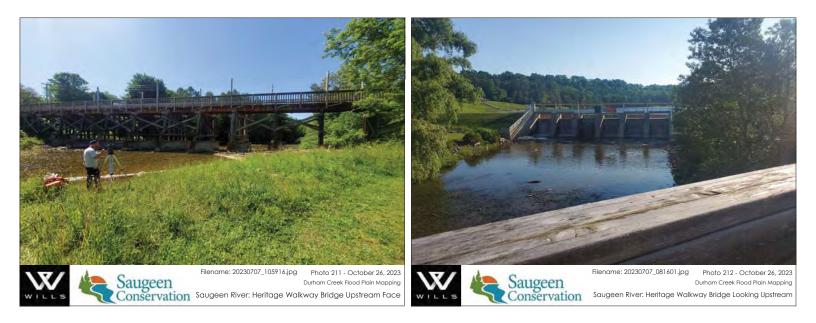
VV/	S. Combuser	Crossin	g Data Sheet:		
	Agreement No.: SVCA		A STATE OF A	Date:	
WILLS	Assignment No.: 5591		We	ather:	
ALC: NO PORT	Project Limits: Durham Ck			ctors: JTF/MK	
	Location	-		Physical Character	istics
CL	Ilvert ID: County Rd 4		Structure: Bridge	ingeneral sindicion	
To	ownship: Orham			nciete	
High	hway ID:		Size (mm):	PICILIC	(dia. or span x rise)
Chainage o			Cover (m):	(Approx.)	(ula. or span x rise)
			Length (m):	(Approx.)	
Location @	cerre hambton St LT/RT:	ueer			
Location. oov	Flow Information		Fill Type:	Extension Geomatics	ns:
Flo	w Type:		CDC Control Out		
Type of Water I				stem: Lat / Long: Dec	
		1000	RT: Lat	LT: L	
(Approx.) Flow V	factorization	Samples:	RT: Long	LT: Lo	
] Water		ironmental Consid	erations
High Wate] Soil	[] Fish Observed	[] Navigable	[] Nesting Structure
(% of culve	ert height)] Beaver Evidence	[] Animal Grate	[] Sensitive Env or Pollutan
	Charles and the second second] Groundwater Above Inven	[] Local Wells~20	
	ter / Sediment Measurements		Dow	nstream Channel S	
Water R	/ Water ((mm)	Open Ou		- the design of the second sec
Soil R		and the second sec	Bottom Widt		En la la cua
Perch R	t: //)	4	Dept		
Water L	+ <u> </u>	N Coll (com)	(Approx Rt-Lt) Slope		- V (m) /s (H:)
Soil L		Soil (mm)	(Approx.) T/W D		
Perch L	Ferch unity /	N	C. Burning A. M. D.		
		Sket	ch and Notes		
	015			01	5
	U15		тті (01.	5
TTAT			픠 (_ =	D/.	5
			픠 (==	P/.	S
			프 (D/.	S TITUL
				D/.	S TTTT
				D/.	S TTTT
				n/.	S TTTT
				n/.	5
					5
					5
					S TTTT I (
					S THE
				P/.	
	UIS In montainer The			P/.	S THE
				P/.	S THE I I I I
	UIS In month man The Source of the second se			P/.	S
				P/.	S
				P/.	S
A Contraction of the second se				P/.	S
	UIS In month man The Color of Rocics			p/.	S
				P/.	S
				P/.	S

2

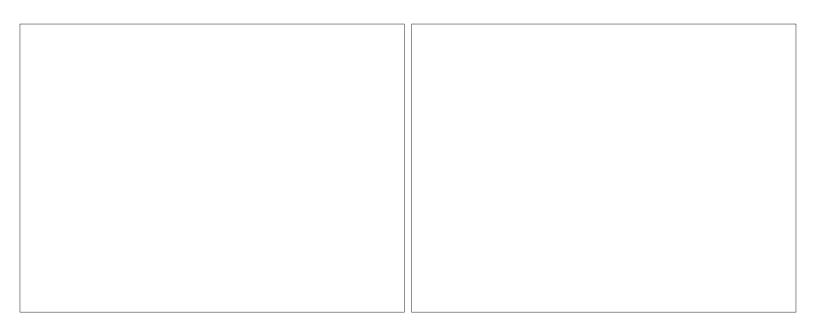


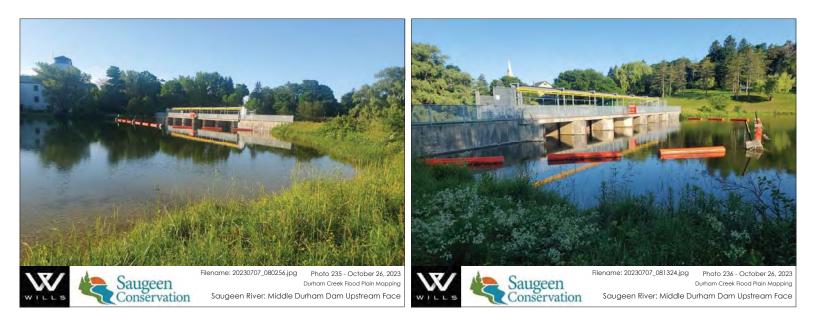
	C	rossing Data Sheet:
VV	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
Cul	vert ID: HWY 6 Bridge	Structure: Bridge
	wnship:	Desc: Or Concrete
High	way ID: Hugh 6	Size (mm): (dia. or span x rise)
Chainage or		Cover (m): (Approx.)
Type:		
Location: Du	hom LT/RT:	
Location. DUV	Flow Information	Fill Type: Extensions:
Flow	v Type:	Geomatics
Type of Water Fe		GPS Coord System: Lat / Long: Dec Deg.
		RT: Lat LT: Lat
Flow Dir		
(Approx.) Flow Ve		Vater Environmental Considerations
High Water		
(% of culver	rt height)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Polluta
1		[] Groundwater Above Invert [] Local Wells~200m
	er / Sediment Measurements	Downstream Channel Section ()
Water Rt	/ vater (mm	Option Outlinks
Soil Rt		Bottom Width (b):
Perch Rt		Depth (d):
Water Lt:		(mm) (Approx. Rt-Lt) Slopes (s):
Soil Lt:	Perch (mm)	(Approx.) T/W Depth: b (m)
Perch Lt:		
		Sketch and Notes
	1	
TITE	THITT	the state the state of the stat
		11 1 1 1 9 1 1 1 1 1 1 1
		1
Roc	Jes + Sand	Rocks and sand
Roc	Jes + Sand	Rocks and sand
Roc	ILS + Sand	Rocks and Sand



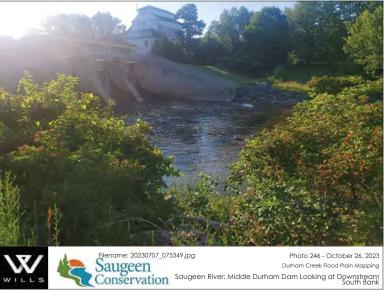


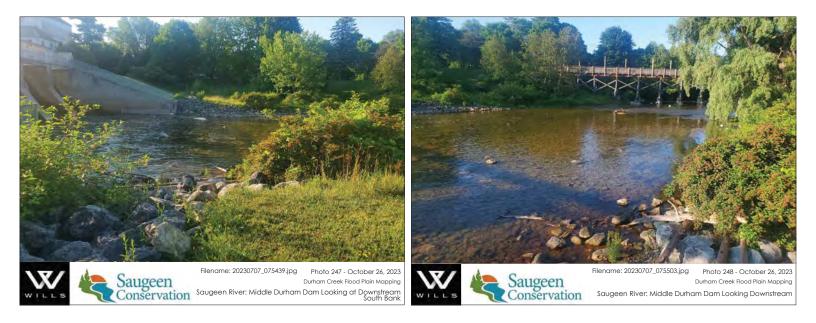
VV/	(Crossing Data She	eet:	
	Agreement No.: SVCA		Date:	
WILLS	Assignment No.: 5591		Weather:	
The second second	Project Limits: Durham Ck		Inspectors: JTF/MK	
	Location		Physical Character	
Culver		ge Structure: Brid		2
Towns	ompr	Desc. U	Wood Triers	· · · · · · · · · · · · · · · ·
Highway		Size (mm):		(dia. or span x rise)
Chainage or LH	1RS:	Cover (m):	(Approx.)	
Type:		Length (m):	(Approx.)	
Location:	LT/RT:	Fill Type:	Extension	ns:
	Flow Information		Geomatics	
Flow T			ord System: Lat / Long: Dec	
Type of Water Feat		RT: Lat	LT: L	
Flow Direc		mples: RT: Long	LT: LO	
(Approx.) Flow Velo		Water	Environmental Consid	CARE COUNCY OF FR.
High Water M		Soil [] Fish Observed	[] Navigable	[] Nesting Structure
(% of culvert he	eight)	[] Beaver Evidence	[] Animal Grate	[] Sensitive Env or Pollut
		[] Groundwater Abo	and the set of the set	and the second se
	/ Sediment Measurements		Downstream Channel S	Section ()
Water Rt:	Water (m		pen Outlet :	_
Soil Rt:	-	Bottor	n Width (b):	- > + /
Perch Rt:	<u> </u>		Depth (d).	- \ d (m) /s (
Water Lt:	NV SC		i) Slopes (s):	
Soil Lt:	Perch (mm)	(Approx.)	T/W Depth:	(m)
Perch Lt:		Sketch and Notes		
				117(7)
	<u> </u>			117171
- <u></u>				117171
				117171
- <u></u>	TIIII IIIII			117171
	TITITITI			117171
	11111111111 11111111111111111111111111			117171
	11111111111 2000000	1111111 L L L L L L L L L L L L L L L L		117171
	IIIII IIIII Notestation Rock	11111111 L L L L L L L L L L L L L L L		117171
	JIIII IIIII Notestoo Rock	1111111 L L L L L L L L L L L L L L L L		117171
- <u>111</u>	JIIII IIII Notesta Rock	1111111 V V COOLOOC S		117171
- <u>11</u>	Moleck	1111111 V V V V V V V V V V V V V V V V		117171
- <u>11</u>	Model Coologo Rock	1111111 V V V V V V V V V V V V V V V V		117171
	Molector Rock	1111111 V V V V V V V V V V V V V V V V		117171
- <u>-</u>	Not Cooloo Rock	1 T II II II		117171
	North Marine Mar	1 TII II II		117171
	ADDINGOODOO Rock	1 TII II II		117171
- [] - J - J - J - J - J - J - J - J - J - J	JIIII IIII Aboltotototototototototototototototototot	111111 L L L L L L L L L L L L L L L L		117171

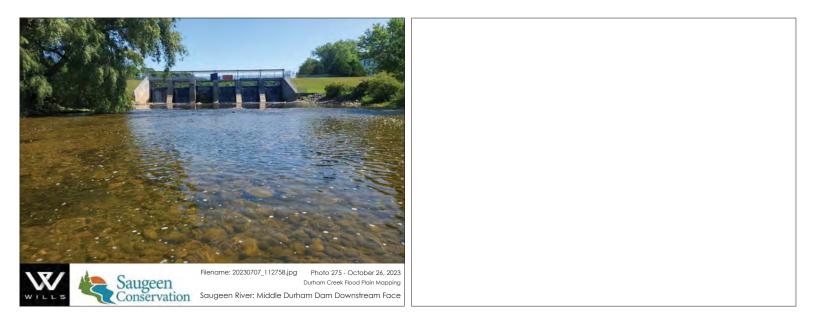




Crossi	ng Data Sheet:
Agreement No.: SVCA	Date:
WILLS Assignment No.: 5591	Weather:
Project Limits: Durham Ck	Inspectors: JTF/MK
Location	Physical Characteristics
Culvert ID: Middle Parm	Structure: Bridge Dom , 1 = 1 4
Township:	Desc: D
Highway ID:	Size (mm): (dia. or span x rise)
Chainage or LHRS:	Cover (m): (Approx.)
Туре:	Length (m): (Approx.)
Location: LT/RT:	Fill Type: Extensions:
Flow Information	Geomatics
Flow Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water Feature:	RT: Lat
Flow Direction: Samples:	RT: Long LT: Long
(Approx.) Flow Velocity: m/s [] Water	Environmental Considerations
High Water Mark:	
(% of culvert height)	
(a or culver neight)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutani
Water / Sediment Measurements	[] Groundwater Above Invert [] Local Wells-200m
Water Pt	Downstream Channel Section () Open Outlet :
Soil Rt:	Bottom Width (b):
Perch Rt:	
Motor Lt.	Depth (d):
Water Lt: Soil (mm)	(Approx. Rt-Lt) Slopes (s):
Soil Lt: Perch (mm)	(Approx.) T/W Depth: b (m)
Perch Lt:	etch and Notes
Stop log bay 5	XXXXXXX JAXXXX JATE Jate
	Hops







	Cross	ing Data Sheet:
	Agreement No.: SVCA	Date:
WILLS	Assignment No.: 5591	Weather:
	Project Limits: Durham Ck	Inspectors: JTF/MK
	Location	Physical Characteristics
	ivert ID: Day 3 Upper Pam	
and the second se	wnship:	Desc: & confrete + Steel Lella
	way ID:	Size (mm): (dia. or span x rise)
Chainage or	LHRS:	Cover (m): (Approx.)
Type:		Length (m): (Approx.)
Location:	LT/RT:	Fill Type: Extensions:
Els.	Flow Information	Geomatics
	w Type:	GPS Coord System: Lat / Long: Dec Deg.
Type of Water F Flow Di		RT: LatLT: Lat
(Approx.) Flow V	al a star a s	RT: Long
	C I Freitor	Environmental Considerations
High Wate		[] Fish Observed [] Navigable [] Nesting Structure
(% of culve	n neight)	[] Beaver Evidence [] Animal Grate [] Sensitive Env or Pollutan
NA/-+	er / Sediment Measurements	[] Groundwater Above Invert [] Local Wells-200m
Water R	in the second	Downstream Channel Section () Open Outlet :
Soil R	/ vvaler (mm)	
Perch Rt		Bottom Width (b):
Water L		(Approx. Rt-Lt) Slopes (s):
Soil L	Soil (mm)	(Approx. Rt-Lt) Slopes (s):
Perch Lt		
, stell at	813	etch and Notes
fence	X X Overt	Noverflage XXIX INTXX Verflage Revice AXX wing Wing Wing wall De Do Mud + rock 5
	Rock	

Appendix B

Hydrology

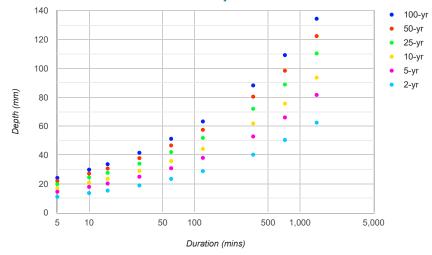
Appendix B1

Rainfall

Active coordinate

44° 10' 15" N, 80° 33' 45" W (44.170833,-80.562500) Retrieved: Fri, 08 Sep 2023 18:05:51 GMT

Location summary


These are the locations in the selection.

IDF Curve: 44° 10' 15" N, 80° 33' 45" W (44.170833,-80.562500)

Results

An IDF curve was found.

Coordinate: 44.170833, -80.562500 IDF curve year: 2023

Coefficient summary

IDF Curve: 44° 10' 15" N, 80° 33' 45" W (44.170833,-80.562500)

Retrieved: Fri, 08 Sep 2023 18:05:51 GMT

Data year: 2010 IDF curve year: 2023

Statistics

Rainfall intensity (mm hr⁻¹)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	131.9	81.4	61.3	37.8	23.4	14.4	6.7	4.2	2.6
5-yr	173.9	107.2	80.8	49.9	30.8	19.0	8.8	5.5	3.4
10-yr	202.3	124.7	94.0	58.0	35.8	22.1	10.3	6.3	3.9
25-yr	237.5	146.4	110.3	68.0	42.0	25.9	12.0	7.4	4.6
50-yr	263.7	162.5	122.5	75.5	46.6	28.7	13.4	8.2	5.1
100-yr	289.8	178.6	134.6	83.0	51.2	31.6	14.7	9.1	5.6

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	11.0	13.6	15.3	18.9	23.4	28.8	40.2	50.4	62.4
5-yr	14.5	17.9	20.2	24.9	30.8	38.0	52.8	66.0	81.6
10-yr	16.9	20.8	23.5	29.0	35.8	44.2	61.8	75.6	93.6
25-yr	19.8	24.4	27.6	34.0	42.0	51.8	72.0	88.8	110.4
50-yr	22.0	27.1	30.6	37.8	46.6	57.4	80.4	98.4	122.4
100-yr	24.1	29.8	33.6	41.5	51.2	63.2	88.2	109.2	134.4

Terms of Use

You agree to the Terms of Use of this site by reviewing, using, or interpreting these data.

Ontario Ministry of Transportation | Terms and Conditions | About Last Modified: September 2016

6 hr SCS Type 2 Distribution for Durham Creek FPM

Climate Year (ECCC)		.at	44.170833					Areal Reductio	n Factor:	
	2051 L	ong	-80.5625					rcp45_tg_mear	ו_delta7100_	2
				Rainfall						
r				<u> </u>						
Time (hrs)	2-Year	5-Year	10-Year	Increm 25-Year	ental 6 HR SC 50-Year	S (mm) 100-Year	25-Year CC	50-Year CC	100-Year CC	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.25	0.45	0.59	0.70	0.81	0.90	0.99	0.99	1.10	1.21	
0.50	0.46	0.60	0.70	0.82	0.91	1.00	0.99	1.11	1.22	
0.75	0.47	0.61	0.72	0.84	0.93	1.02	1.02	1.14	1.25	
1.00	0.52	0.68	0.79	0.93	1.03	1.13	1.13	1.26	1.38	
1.25	0.58	0.76	0.89	1.04	1.16	1.28	1.27	1.42	1.56	
1.50	0.66	0.87	1.02	1.18	1.32	1.45	1.44	1.61	1.77	
1.75	0.76	1.00	1.17	1.36	1.52	1.67	1.66	1.86	2.04	
2.00	0.89	1.17	1.37	1.60	1.79	1.96	1.95	2.18	2.39	
2.25	1.08	1.42	1.66	1.94	2.16	2.37	2.36	2.64	2.89	
2.50	1.39	1.83	2.14	2.49	2.79	3.06	3.04	3.40	3.73	
2.75	3.36	4.42	5.17	6.02	6.73	7.38	7.35	8.21	9.00	
3.00	13.50	17.73	20.75	24.18	27.00	29.61	29.50	32.94	36.13	
3.25	6.97	9.15	10.71	12.48	13.93	15.28	15.22	17.00	18.65	
3.50	1.98	2.60	3.05	3.55	3.97	4.35	4.33	4.84	5.31	
3.75	1.27	1.66	1.95	2.27	2.53	2.78	2.77	3.09	3.39	
4.00	1.04	1.36	1.60	1.86	2.08	2.28	2.27	2.53	2.78	
4.25	0.86	1.13	1.33	1.54	1.72	1.89	1.88	2.10	2.31	
4.50	0.76	1.00	1.17	1.36	1.52	1.67	1.66	1.85	2.03	
4.75	0.66	0.87	1.02	1.19	1.32	1.45	1.45	1.62	1.77	
5.00	0.59	0.78	0.91	1.06	1.18	1.30	1.29	1.44	1.58	
5.25	0.53	0.69	0.81	0.94	1.05	1.16	1.15	1.29	1.41	
5.50	0.50	0.66	0.77	0.89	1.00	1.10	1.09	1.22	1.34	
5.75	0.47	0.62	0.73	0.85	0.95	1.04	1.03	1.16	1.27	
6.00	0.45	0.59	0.69	0.81	0.90	0.99	0.98	1.10	1.20	
Total	40.20	52.80	61.80	72.00	80.40	88.20	87.85	98.09	107.61	

1

Project No: 5591 Project Name: Durham Creek FPM

Designed/Checked By: SO/MC

					Hurricane Hazel to	Durham Creek FPM		
5						Project No: 5591 Project Name: Durham Designed/Checked By: MC Date: 14-Dec-:		
ta Year	1954	lat		44.20833321		Areal Reduction Factor:		0.766
mate Chang	2051	long		-80.79166908		rcp45_tg_mean_delta7100_p50: Rainfall		2.94
						Kaimaii		
			Hazel (mm) with ARF=1 and Climate Change	Hazel (mm) with Areal Reduction	Hazel (mm) with ARF=0.766 and Climate		Areal Reduction Fac	tors Hazel
	Time (hrs)	Hazel (mm)	ΔT=2.94	Factor =0.766	Change ∆T=2.94	Equiv	alent Circle Diamter (km ²)	Areal Reduction Facto
	0.00	0.0	0.00	0.00	0.00	0 to 25		100.
	1.00	2.0	2.44	1.53	1.87	26 to 45 46 to 65		99.
	3.00	2.0	2.44	1.53	1.87	46 to 65 66 to 90		98.
	4.00	2.0	2.44	1.53	1.87	91 to 11		96.
	5.00	2.0	2.44	1.53	1.87	116 to 1	40	95
	6.00	2.0	2.44	1.53	1.87	141 to 1		94.
	7.00	2.0	2.44	1.53	1.87	166 to 1: 196 to 2:		94.
	9.00	2.0	2.44	1.53	1.87	196 to 2 221 to 2		93.
	10.00	2.0	2.44	1.53	1.87	246 to 2		92.
	11.00	2.0	2.44	1.53	1.87	271 to 4		89
	12.00	2.0	2.44	1.53	1.87	451 to 5		86.
	13.00 14.00	2.0	2.44	1.53	1.87	576 to 7/ 701 to 8		84.
	14.00	2.0	2.44	1.53	1.87	701 to 8 851 to 10		82.
	16.00	2.0	2.44	1.53	1.87	1001 to		79.
	17.00	2.0	2.44	1.53	1.87	1201 to		76.
	18.00	2.0	2.44	1.53	1.87	1501 to		74.
	19.00 20.00	2.0	2.44	1.53	1.87	1701 to 2001 to 2		73.
	20.00	2.0	2.44	1.53	1.87	200110		71.
	22.00	2.0	2.44	1.53	1.87	2501 to 3		69.
	23.00	2.0	2.44	1.53	1.87	2701 to -		64
	24.00 25.00	2.0 2.0	2.44	1.53	1.87	4501 to 6001 to		61. 58.
	25.00	2.0	2.44	1.53	1.87	7001 to		58.
	27.00	2.0	2.44	1.53	1.87	1001101		57.
	28.00	2.0	2.44	1.53	1.87			
	29.00	2.0	2.44	1.53	1.87			
	30.00 31.00	2.0	2.44	1.53	1.87			
	32.00	2.0	2.44	1.53	1.87			
	33.00	2.0	2.44	1.53	1.87			
	34.00	2.0	2.44	1.53	1.87			
	35.00 36.00	2.0	2.44 3.66	1.53	1.87			
	36.00	3.0	3.66	4.60				
	38.00	4.0	4.88	3.06	3.74			
	39.00	6.0	7.32	4.60	5.61			
	40.00	13.0	15.86	9.96	12.15			
	41.00	17.0	20.74	13.02	15.89			
	42.00 43.00	13.0 23.0	15.86 28.06	9.96	12.15 21.50			
	43.00	13.0	15.86	9.96	12.15			
	45.00	13.0	15.86	9.96	12.15			
	46.00	53.0	64.66	40.60	49.53			
	47.00 48.00	38.0 13.0	46.36 15.86	29.11 9.96	35.51 12.15			
	40.00	13.0	15.80	9.90	12.15			

Appendix B2

Time of Concentration and HEC-HMS Model Parameter Calculations

Time of Concentration Calculations

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time of	Concentration TR55 SubBasin	_101			
				х	Y	
SubBasin_101				18580.13	524.53	
				18470.46	524.47	
		Sheet Flow	Slope AB	0.000547096		
			sioperite	18470.46	524.47	
				10917.1	522.16	
		Shallow Concentrated Flow	Slope BC	0.000305823	522.10	
		Shallow concentrated flow		10917.08	522.16	
	-			2833	522.10	
		Channel flow	Class CD	0.001860447	507.12	
		Channel flow	Slope CD	2833	507.40	
				2833	507.12	
				-	493.18	
		Channel flow	Slope DE	0.004920579		
		Sheet Flow				<i>(</i>)
	Segment ID	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(imperial)
1. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.8			0.00	
Flow length, L (total L ≤ 300 ft)	L	109.67	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.001	0		0.00	
$0.007(nL)^{0.8}$	T_sheet			8.36	#DIV/0!	8.36
$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$						
5						
		Shallow Concentrated Flow				
	Segment ID	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)	-	Unpaved	N/A	Unpaved	N/A	
3. Flow length, L	L	7553.4	0	24781.43	0.00	
9. Watercourse slope, s	s	0.000305823	0	0.000306	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		0.28	0.00	
Unpaved $V = 16.1345S^{0.5}$	-					
Paved V = $20.3282S^{0.5}$						
T	T shallow			24.40	#DIV/0!	24.40
$T_t = \frac{L}{3600V}$	1_SHAHOW			24.40	#010/0:	24.40
11 50007		Channel flow				
	Segment ID	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imporial)
	Segment ID	Segment 1 (Si)	Segment 2 (SI)	Segment 1 (imperial)	Segment 2	(iniperial)
12. Cross sectional flow area, a		6.16	83.16	66.31	895.08	
	area	12.25		40.19	179.44	
13. Wetted perimeter, pw	p_w	12.25	54.69			
14. Hydraulic radius, r= Compute r	1	+		1.65	4.99	\mid
15 Channel slope, s	s			0.002	0.005	
16. Manning's roughness coefficient, n	n	0.035	0.035	0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			2.56	8.72	
V =n						
17	- <u> </u> .			200000	0004 00	
18. Flow length, L	L	8084.08	2833	26522.57	9294.62	
L	T_channel			2.87	0.30	3.17
$T_t = \frac{L}{3600V}$		1	1			
						1
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	35.92

1

Time of Concentration Calculations

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	of Concentration TR55 SubBasi	n_102			
				х	Y	
SubBasin_102				9973.49	539.13	
				9874.21	538.1	
		Sheet Flow	Slope AB	0.010374698		
			Sieperio	9874.21	538.1	
				5625.4	520.7	
		Shallow Concentrated Flow	Slope BC	0.004095264	520.7	
			Siope be	5625.4	520.7	
				2180.5	497.74	
		Channel flow	Slope CD	0.006664925	497.74	
		channel now	Siope CD	2180.5	497.74	
	_			2180.5	497.74	
			d		493.06	
		Channel flow	Slope DE	0.002146297		
	C	Sheet Flow	C	C	c	0
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(imperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.170			0.00	
 Flow length, L (total L ≤ 300 ft) 	L	99.28	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.40			0.00	
5. Land slope, s	Land Slop	0.0104	0			
$T_t = \frac{0.007 (nL)^{0.8}}{P_c^{0.5} s^{0.4}}$	T_sheet			0.69	#DIV/0!	0.69
$T_t = \frac{1}{P_t^{0.5} s^{0.4}}$						
5						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	4248.8	0	13939.67	0.00	
9. Watercourse slope, s	s	0.0041	0	0.004	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.03	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
I	T shallow			3.75	#DIV/0!	3.75
$T_t = \frac{L}{3600V}$						
	_	Channel flow				
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
	beginene		Segment 2 (Si)	Segment 2 (imperior)	Jeginene 2	(iniperial)
12. Cross sectional flow area, a	area	1.23	3.44	13.25	37.03	
13. Wetted perimeter, pw	p w	10.27	7.06			
14. Hydraulic radius, r= Compute r	p_w	10.27	7.00	0.39	1.60	
15 Channel slope, s	s			0.0067	0.0021	
15 Channel slope, s 16. Manning's roughness coefficient, n	-				0.0021	
2 1	n			0.035		
$1.49r^{\frac{3}{3}s^{\frac{1}{2}}}$	V			1.87	2.70	
$V = \frac{\frac{1.49r^{3}s^{\frac{1}{2}}}{n}}{n}$						
17 18. Flow length, L	1	3444.9	2180.5	11302.17	7153.87	
18. Flow length, L	L	3444.9	2180.5	11302.17	/153.8/	
T - L	T_channe			1.68	0.74	2.42
$T_t = \frac{L}{3600V}$						
					Tc (Hr)	6.86
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)						

2

Time of Concentration Calculations

	Project No:	5591
	Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	of Concentration TR55 SubBas	n_103			
				Х	Y	
SubBasin_103				14717.92	530.7	
				14612.87	529.45	
		Sheet Flow	Slope AB	0.011899096		
	-			14612.87	529.45	
				8350.7	507.23	
		Shallow Concentrated Flow	Slope BC	0.003548262	507.25	
	-	Shallow concentrated flow	ыореве	8350.65	507.23	
				0	492.03	
		Channel flow	Slope CD	0.001820218	492.05	
		Channel now	зюресь	0.001820218		
			Sh	"DN / AL		
		N/A	Slope DE	#DIV/0!		
	C	Sheet Flow	C	6	c	0
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
1. Surface description (table 3-1)	-	Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L ≤ 300 ft)	L	105.05		344.65	0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.0119	0	0.0119	0.00	
$T_t = \frac{0.007 (nL)^{0.8}}{P_s^{0.5} s^{0.4}}$	T_sheet			0.68	#DIV/0!	0.68
$I_t = \frac{1}{P_2^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	6262.2	0	20545.34	0.00	
9. Watercourse slope, s	s	0.0035	0.0000	0.004	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		0.96	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			5.94	#DIV/0!	5.94
$T_t = \frac{L}{3600V}$						
		Channel flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
				8 ((
12. Cross sectional flow area, a	area	11.94	0.00	128.53	0.00	
13. Wetted perimeter, pw	p w	11.94	0.00	39.07	0.00	
14. Hydraulic radius, r= Compute r	w	11.91	0.00	33.07		
15 Channel slope, s	s			0.002		
15 Channel slope, s 16. Manning's roughness coefficient, n	n			0.002	#DIV/0! 0.035	
2 1	n V					
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			4.02	#DIV/0!	
$v = \frac{1}{n}$						
19 18. Flow length, L	L	8350.65	0	27397.15	0.00	
	T charac			1.89	#DIV/0!	1.89
$T_t = \frac{L}{3600V}$	T_channe			1.89	#DIV/0!	1.89
19 50000	-				To (Hr)	0.54
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	8.51
	1	1	1		Tc (mins)	510.89

3

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	f Concentration TR55 SubBasi	n_104			
				х	Y	
SubBasin_104				3451.69	507.86	
				3350.42		
		Sheet Flow	Slope AB	0.082354103	135.52	
		Sheet Flow	зюре Ав	3350.42	499.52	
				3330.42		
		Shallow Concentrated Flow	Slone BC	0.029246795		
		Shallow Concentrated Flow	Slope BC			
				3250.58		
	_		SI	1612.24	493.05	
		Shallow Concentrated Flow	Slope CD	0.002166827		
				1612.24		
				0	-	
		Channel flow	Slope DE	0.000831142		
		Sheet Flow				
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
1. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.8				
 Flow length, L (total L ≤ 300 ft) 	L	101.27	0			
4. Two-year 24-hour rainfall, P2	P_2	62.4	0			
5. Land slope, s	Land Slop	0.082	0	0.08	0.00	
$0.007(nL)^{0.8}$	T_sheet			1.06	#DIV/0!	1.06
$T_t = \frac{0.007 (nL)^{0.8}}{P_{t}^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow	•			
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)	-	Unpaved	N/A	Unpaved	N/A	,
8. Flow length, L	L	99.8				
9. Watercourse slope, s	5	0.0292	0.0022			
10. Average velocity, V (figure 3-1)	V	N/A		2.76		
Unpaved $V = 16.1345S^{0.5}$	-			2.70	0.55	
Paved V = $20.3282S^{0.5}$						
I	T_shallow			0.03	1.58	1.61
$T_t = \frac{L}{3600V}$				0.03	1.50	1.01
11 50000		Channel flow				
	Cogmont	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imporial)
	Segment	(Segment 1 (SI)	Segment 2 (SI)	Segment 1 (impenal)	Segment 2	(iiiiperiai)
12. Groce contional flow area a	area	2.60	0.00	28.03	0.00	
12. Cross sectional flow area, a			0.00			
13. Wetted perimeter, pw	p_w	16.81	0.00			
14. Hydraulic radius, r= Compute r				0.51		
15 Channel slope, s	S			0.001	0.001	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			0.78	#DIV/0!	
v =						
1/	-	1612.24	0	E200 50	0.00	
18. Flow length, L	L	1612.24	0	5289.50	0.00	
	T channe			1.88	#DIV/0!	1.88
T T L	I_Channe					
19 $T_t = \frac{T_{t=0}^L}{3600V} \frac{L}{3600V}$	1_channe					
$T_t = \frac{T_t}{3600V} = \frac{L}{3600V}$ 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	1_channe				Tc (Hr)	4.55

Project No:	5591
Project Name:	Durham Creek FPM
Designed/Checked By:	JTF/MC

ded By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	of Concentration TR55 SubBas	in_105			
				х	Y	
SubBasin_105				11064.03	516.89	
				10959.18	513.12	
		Sheet Flow	Slope AB	0.035956128		
				10959.18	513.12	
				6165.9		
		Shallow Concentrated Flow	Slope BC	0.003855398		
				6165.9		
				2750		
		Channel flow	Slope CD	0.004092626		
				2750	480.66	
				0		
		Channel flow	Slope DE	0.000912727		
		Sheet Flow	SIGPE DE	0.000312727		
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imnerial)
1. Surface description (table 3-1)	Jeginene	Residue cover > 20%	N/A	Residue cover > 20%	N/A	(imperiar)
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L \leq 300 ft)	1	104.85	0			
4. Two-year 24-hour rainfall, P2	P 2	62.4	0			
5. Land slope, s	Land Slop				0.00	
	T sheet	0.030	0		#DIV/0!	0.44
$T_t = \frac{0.007(nL)^{0.8}}{P_s^{0.5} s^{0.4}}$	1_sneet			0.44	#010/0:	0.44
$P_2^{0.5}s^{0.4}$						
0		Shallow Concentrated Flow				
	1	Shallow Concentrated Flow				
	Cogmont	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imporial)
7. Surface description (paved or unpaved)	Segment	Unpaved	N/A	Unpaved	N/A	(iiiiperiai)
8. Flow length, L		4793.3	0			
9. Watercourse slope, s	s	0.003855398				
10. Average velocity, V (figure 3-1)	v	N/A	0	1.00		
Unpaved $V = 16.1345S^{0.5}$	•	N/A		1.00	0.00	
Paved V = $20.3282S^{0.5}$						
1	T_shallow			4.26	#DIV/0!	4.36
$T_t = \frac{L}{3600V}$	1_snanow			4.50	#DIV/0!	4.30
11 50000		Channel flow				
	Cogmont	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imporial)
	Segment	(Segment 1 (Si)	Segment 2 (SI)	Segment 1 (impenal)	Segment 2	(iiiiperiai)
12. Cross sectional flow area, a	area	4.48	5.43	48.19	58.40	
		4.48		48.19 35.41		
13. Wetted perimeter, pw 14. Hydraulic radius, r= Compute r	p_w	10.79	11.14	35.41		
	r			0.004	0.001	
15 Channel slope, s 16. Manning's roughness coefficient, n	-					
10. Ivianning s roughness coefficient, n	n V			0.035	0.035	
$V = \frac{1.49r^2_3 s^2}{n}$	V			3.34	1.76	
$v = \frac{1}{n}$						
17 18. Flow length, L	1	3415.9	2750	11207.02	9022.31	
			2750			
$T_t = \frac{L}{3600V}$	T_channe			0.93	1.43	2.36
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	7.15
					Tc (mins)	429.26

Project No:	5591
Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time c	f Concentration TR55 SubBas	n_106			
				х	Y	
SubBasin_106				11730.82	520.34	
				11646.32	518.93	
		Sheet Flow	Slope AB	0.016686391		
			-	11646.32	518.93	
				4978.0	495.55	
		Shallow Concentrated Flow	Slope BC	0.003506146		
				4978.03	495.55	
				0	478.18	
		Channel flow	Slope CD	0.003489332		
			-	0	478.18	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0	0.17	0.00	
 Flow length, L (total L ≤ 300 ft) 	L	84.5	0	277.23	0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0	2.46	0.00	
5. Land slope, s	Land Slope	0.017	0	0.02	0.00	
$0.007(nL)^{0.8}$	T_sheet			0.50	#DIV/0!	0.50
$T_t = \frac{0.007(nL)^{0.8}}{P_0^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow	•			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)	-	Unpaved	N/A	Unpaved	N/A	<u> </u>
8. Flow length, L	L	6668.3	0	21877.59	0.00	
9. Watercourse slope, s	s	0.003506146	0	0.004	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		0.96	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
T L	T_shallow			6.36	#DIV/0!	6.36
$T_t = \frac{L}{3600V}$						
		Channel flow	•	•		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
12. Cross sectional flow area, a	area	1.04	0.00	11.18	0.00	
13. Wetted perimeter, pw	p_w	9.90	0.00	32.48	0.00	
14. Hydraulic radius, r= Compute r	r			0.34	#DIV/0!	
15 Channel slope, s	s			0.003	#DIV/0!	
16 Manning's roughnoss coofficient in	n			0.035	0.035	
$V = \frac{\frac{1.49r^{2}s^{\frac{1}{2}}}{n}}{n}$	V			1.24		
$V = \frac{1.77732}{7}$						
18. Flow length, L	L	4978.03	0	16332.12	0.00	
L	T_channel			3.67	#DIV/0!	3.67
$T_t = \frac{L}{3600V}$				5.07	#010/0!	3.07
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	10.54
20. watershea of subarea re of reladu rent steps 0, 11, and 19)					Tc (mins)	632.11

Project No:	5591
Project Name:	Durham Creek FPM
Designed/Checked By:	JTF/MC
Date:	12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	of Concentration TR55 SubBasi	in_107			
				х	Y	
SubBasin 107				13754.54	504.23	
500505H_107				13645.04	500.67	
		Sheet Flow	Slope AB	0.032511416	500.07	
		Sheet Flow	боре Ав	13645.04	500.67	
				11107.2	491.65	
		Shallow Concentrated Flow	Slope BC	0.00355419		
				11107.19		
				0	472.71	
		Channel flow	Slope CD	0.001705202		
				0	472.71	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)			Segment 2	(Imperial)
1. Surface description (table 3-1)	_	Heavy Underbush		Heavy Underbush	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.8				
Flow length, L (total L ≤ 300 ft)	L	109.5	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4				
5. Land slope, s	Land Slope	0.033	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$	T_sheet			1.63	#DIV/0!	1.63
$T_t = \frac{-p_0^{0.5}s^{0.4}}{p_0^{0.5}s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	2537.9	0	8326.28	0.00	
9. Watercourse slope, s	s	0.00355419	0	0.004	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		0.96	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
_ L	T shallow			2.40	#DIV/0!	2.40
$T_t = \frac{L}{3600V}$,	
		Channel flow	P			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	(Imperial)
					Ŭ	
12. Cross sectional flow area, a	area	29.97	0.00	322.62	0.00	
13. Wetted perimeter, pw	p w	45.83			0.00	
14. Hydraulic radius, r= Compute r	r	15.65	0.00	2.15		
15 Channel slone s	s			0.002	#DIV/0!	
16 Manning's roughness coefficient in	n			0.035	0.035	
	v			2.92		
16. Manning's roughness coefficient, n $V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			2.92	#010/0!	
17 n						
18. Flow length, L	L	11107.19	0	36440.91	0.00	
$T_t = \frac{L}{3600V}$	T_channel			3.46	#DIV/0!	3.46
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	7.49
					Tc (mins)	449.70

5591
Durham Creek FPM
JTF/MC
12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time o	of Concentration TR55 SubBas	in_108			
			_	x	Y	
SubBasin 108				5667.38	494.04	
				5567.21	491.5	
		Sheet Flow	Slope AB	0.025356893		
		Sheet Flow	Зюре Ав	5567.21	491.5	
				3153.1	478.23	
	-	Shallow Concentrated Flow	Slope BC	0.00549685	476.25	
		Shallow concentrated Flow	зюревс	3153.1	478.23	
				3153.1	478.23	
		Channel flow	Slope CD	0.001757001	472.69	
		Channel flow	Slope CD	0.001/5/001	472.69	
				0	472.69	
		N/A	Slope DE	#DIV/0!		
	Commonit	Sheet Flow	Commont 2 (CI)	Comment 1 (Insuranticity	C	(manadal)
4 (C)	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (imperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L ≤ 300 ft)	L	100.17	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.025	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_s^{0.5} s^{0.4}}$	T_sheet			0.49	#DIV/0!	0.49
$I_t = \frac{1}{P_2^{0.5} s^{0.4}}$						
6 -						
		Shallow Concentrated Flow		r		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	Imperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	2414.1	0	7920.31	0.00	
9. Watercourse slope, s	s	0.00549685	0	0.005	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		1.20	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
T _ L	T_shallow			1.84	#DIV/0!	1.84
$T_t = \frac{L}{3600V}$						
		Channel flow	-			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2	Imperial)
12. Cross sectional flow area, a	area	38.00	0.00	409.07	0.00	
13. Wetted perimeter, pw	p_w	26.93	0.00	88.35	0.00	
14. Hydraulic radius, r= Compute r	r			4.63	#DIV/0!	
15 Channel slope, s	s			0.002	#DIV/0!	
· · · · · · · · · · · · · · · · · · ·	n			0.035	0.035	
21	V			4.96		
$V = \frac{1.49735^2}{1.49735^2}$	· · · · · · · · · · · · · · · · · · ·				, 5.	
16. Manning's roughness coefficient, n $V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$ 17						
18. Flow length, L	L	3153.1	0	10344.82	0.00	
	T. ala an			0.50	#DIV//01	0.50
$T_t = \frac{L}{3600V}$	T_channel			0.58	#DIV/0!	0.58
	_				T. (11.)	
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	2.90
	1	1	1	1	Tc (mins)	174.25

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

				X	v	
SubBasin 109				7868.75	486.97	
SubBasin_109				7768.76		
		Sheet Flow	Slope AB	0.02520252		
				7768.76		
				7594.4	479.57	
		Shallow Concent	Slope BC	0.027988071		
				7594.4	479.57	
				4431.66	474.87	
		Shallow Concent	Slope CD	0.001486053	:	
				4431.66	474.87	
				C	469.85	
		Channel flow	Slope DE	0.001132758	1	
		Sheet Flow	·			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (I	mperial)
1. Surface description (table 3-1)		Heavy Underbush		Heavy Underbush	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.8		0.80		
 Flow length, L (total L ≤ 300 ft) 	L	99.99		0 328.05		
4. Two-year 24-hour rainfall, P2	P_2	62.4		0 2.46		
5. Land slope, s	Land Slope	0.025		0.03		
$T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	T_sheet			1.68	#DIV/0!	1.68
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
6						
	Shal	low Concentrated	Flow			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (I	mperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	174.4	3162.7			
9. Watercourse slope, s	s	0.027988071	0.00148605	3 0.028	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		2.70	0.78	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
$T_{\star} = \frac{L}{\ldots}$	T_shallow			0.06	3.68	3.74
$T_t = \frac{L}{3600V}$						
		Channel flow		-		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (I	mperial)
	-					
12. Cross sectional flow area, a	area	3.49				
13. Wetted perimeter, pw	p_w	26.86	0.0			
14. Hydraulic radius, r= Compute r	r			0.43		
15 Channel slope, s	s			0.001		
16. Manning's roughness coefficient, n	n			0.035		
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			0.81	#DIV/0!	
$v = \frac{17}{n}$		1				
17 18. Flow length, L	L	4431.66	1	0 14539.57	0.00	
-	T 1 1 1 1 1					
$T_{\star} =$	T_channe			4.98	#DIV/0!	4.9
19 3600V 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	_			+		
					Tc (Hr)	10.3

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_110			
				х	Y	
SubBasin_110				11593.2	505.09	
				11493.96	500.22	
		Sheet Flow	Slope AB	0.049072954		
			-	11493.96	500.22	
				7933.2	479.95	
		Shallow Concentrated Flow	Slope BC	0.005692541		
				7933.16	479.95	
				6272.96	472.34	
		Channel flow	Slope CD	0.004583785		
				6272.96	472.34	
				0	469.6	
		Channel flow	Slope DE	0.000436795		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	oerial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0	0.17	0.00	
 Flow length, L (total L ≤ 300 ft) 	L	99.24	0	325.59	0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0	2.46		
5. Land slope, s	Land Slope	0.049	0	0.05	0.00	
$0.007(nL)^{0.8}$	T_sheet			0.37	#DIV/0!	0.37
$T_t = \frac{0.007(nL)^{0.8}}{P_c^{0.5} s^{0.4}}$						
6 F2 S						
		Shallow Concentrated Flow			· · · · · ·	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	oerial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	3560.8	0	11682.41	0.00	
9. Watercourse slope, s	s	0.005692541	0	0.006	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.22	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			2.67	#DIV/0!	2.67
$T_t = \frac{L}{3600V}$						
	·	Channel flow			••	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	oerial)
12. Cross sectional flow area, a	area	1.03	25.95	11.04	279.32	
13. Wetted perimeter, pw	p_w	9.33	34.73	30.61	113.94	
14. Hydraulic radius, r= Compute r	r			0.36	2.45	
15 Channel slope, s	s			0.005	0.000	
16. Manning's roughness coefficient. n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			1.46		
$V = \frac{1.497332}{1.497332}$						
17 n						
18. Flow length, L	L	1660.2	6272.96	5446.85	20580.58	
L	Tahaa			1.04	3.53	4.55
$T_t = \frac{L}{3600V}$	T_channel			1.04	3.53	4.57
	-				T = (11+)	7.64
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr) Tc (mins)	7.61 456.37

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_111			
				х	Y	
SubBasin_111				14002.32	501.06	
				13898.72	499.08	
		Sheet Flow	Slope AB	0.019111969		
			-	13898.72	499.08	
				12652.5	491.96	
		Shallow Concentrated Flow	Slope BC	0.005713277		
				12652.5	491.96	
				3886.36	476.02	
		Shallow Concentrated Flow	Slope CD	0.00181836		
				3886.36	476.02	
				0	468.53	
		Channel flow	Slope DE	0.001927253		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
 Flow length, L (total L ≤ 300 ft) 	L	103.6			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.019	0		0.00	
$- 0.007(nL)^{0.8}$	T_sheet			0.56	#DIV/0!	0.56
$T_t = \frac{0.007 (nL)^{0.8}}{P_s^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow		,		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	1246.2	8766.14	4088.65	28760.30	
9. Watercourse slope, s	s	0.005713277	0.00181836		0.002	
10. Average velocity, V (figure 3-1)	V	N/A		1.22	0.688	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
$T_{*} = \frac{L}{\ldots}$	T_shallow			0.93	11.61	12.54
$T_t = \frac{L}{3600V}$						
		Channel flow		1		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	1.03			0.00	
13. Wetted perimeter, pw	p_w	9.33	0.00		0.00	
14. Hydraulic radius, r= Compute r	r			0.36	#DIV/0!	
15 Channel slope, s	S			0.002	0.002	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			0.95	#DIV/0!	
$V = \frac{17}{n}$						
17 18. Flow length, L	-	3886.36		12750.52	0.00	
	L.	3880.30				
$TT = -\frac{LL}{L}$	T_channel			3.74	#DIV/0!	3.74
$19 \begin{array}{c} T_t T_{\overline{t}} & \overline{36000V} \\ \hline \end{array}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	16.84
					Tc (mins)	1010.56

Project No:	5591
Project Name:	Durham Creek FPM
Designed/Checked By:	JTF/MC
Date:	12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBas	sin_112			
				х	Y	
SubBasin_112				8104.34	485.88	
				8003.48	483.47	
		Sheet Flow	Slope AB	0.023894507		
			•	8003.48	483.47	
				7630.3	474.39	
		Shallow Concentrated Flow	Slope BC	0.02433077		
				7630.29	474.39	
				4445.14	470.07	
		Shallow Concentrated Flow	Slope CD	0.001356294		
				4445.14	470.07	
				0	468.53	
		Channel flow	Slope DE	0.000346446		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
 Flow length, L (total L ≤ 300 ft) 	L	100.86	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.024	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	T_sheet			0.50	#DIV/0!	0.50
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	373.2	3185.15	1224.38	10449.97	
9. Watercourse slope, s	S	0.02433077	0.001356294	0.024	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		2.52	0.59	
Unpaved $V = 16.1345S^{0.5}$ Paved V= 20.3282S^{0.5}						
L Paved V= 20.32825						
T -	T_shallow			0.14	4.89	5.02
11 $r_t = \frac{1}{3600V}$						
	6	Channel flow	C	C	c	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
12. Cross sectional flow area, a	2702	1.03	0.00	11.04	0.00	
	area	9.33	0.00	30.61	0.00	
13. Wetted perimeter, pw 14. Hydraulic radius, r= Compute r	p_w	9.33	0.00	30.61	#DIV/0!	
14. Hydraulic radius, r= Compute r 15 Channel slope, s	1			0.36	#DIV/0! 0.000	
15 Channel slope, s 16. Manning's roughness coefficient, n	n			0.000	0.000	
$\frac{2}{2} \frac{1}{2}$	v			0.035		
$V = \frac{\frac{1.49r^{2}s^{\frac{1}{2}}}{n}}{n}$	v			0.40	#DIV/01	
17 n						
18. Flow length, L	L	4445.14	1	14583.79	0.00	
_ LL	-					
	T_channel			10.09	#DIV/0!	10.09
					- (11.)	
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	_				Tc (Hr)	15.61
			1		Tc (mins)	936.80

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_113			
				Х	Y	
SubBasin_113				6550.01	494.52	
				6450.85	490.65	
		Sheet Flow	Slope AB	0.039027834		
				6450.85	490.65	
				1452.3	473.2	
		Shallow Concentrated Flow	Slope BC	0.003491012		
				1452.3	473.2	
	-			0	467.42	
		Channel flow	Slope CD	0.003979894	407.42	
		chainernow		0.003575054	467.42	
				0	407.42	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow	Slope DE	#DIV/0!		
	Cogmont	Sheet Flow	Sogmont 2 (SI)	Cogmont 1 (Imporial)	Segment 2 (Im	aarial
1. Surface description (table 2.1)	Segment		Segment 2 (SI)	Segment 1 (Imperial)	N/A	perial)
1. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush		
2. Manning's roughness coefficient, n (table 3-1)	n	0.8			0.00	
3. Flow length, L (total L ≤ 300 ft)	P 2	99.16			0.00	
4. Two-year 24-hour rainfall, P2	-	62.4			0.00	
5. Land slope, s	Land Slope	e 0.039	0			
$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$	T_sheet			1.40	#DIV/0!	1.40
$I_t = \frac{1}{P_2^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	4998.6				
9. Watercourse slope, s	s	0.003491012	0	0.003	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		0.95	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow	r		4.78	#DIV/0!	4.78
$T_t = \frac{L}{3600V}$	_					
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	4.22	0.00	45.43	0.00	
13. Wetted perimeter, pw	p w	12.67			0.00	
14. Hydraulic radius, r= Compute r	r	12.07	0.00	1.09		
15 Channel slope, s	s	<u> </u>		0.004		
16. Manning's roughness coefficient, n	n	-		0.004	0.035	
	v			2.85		
$V = \frac{1.49r^2s^2}{n}$	v	+		2.85	#017/0!	
$V = \frac{n}{n}$						
19 18. Flow length, L	L	1452.3	I	4764.76	0.00	
1000 (ch6u) c			ł			
$T_t = \frac{L}{3600V}$	T_channel	I		0.46	#DIV/0!	0.46
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	6.64
					Tc (mins)	398.50

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_114			
				х	Y	
SubBasin 114				7766.77	492.84	
				7666.68	491.36	
		Sheet Flow	Slope AB	0.014786692		
		Sheet Flow	зоре Ав	7666.68	491.36	
				5974.7	477.56	
	-	Shallow Concentrated Flow	Slope BC	0.008155932	477.50	
		Shallow concentrated Flow	зоревс	5974.66	477.50	
				5974.66		
		Channel flow	Class CD	0.001715579		
		Channel flow	Slope CD			
				0	467.31	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)	_	Heavy Underbush	N/A	Heavy Underbush	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.8				
Flow length, L (total L ≤ 300 ft)	L	100.09				
4. Two-year 24-hour rainfall, P2	P_2	62.4	0			
5. Land slope, s	Land Slope	0.015	0			
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			2.08	#DIV/0!	2.08
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
3. Flow length, L	L	1692.0	0	5551.25	0.00	
9. Watercourse slope, s	s	0.008155932	0	0.008	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		1.46	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
_ L	T shallow			1.06	#DIV/0!	1.06
$T_t = \frac{L}{3600V}$						
	-	Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	1.09	0.00	11.74	0.00	
13. Wetted perimeter, pw	p w	8.41	0.00		0.00	
14. Hydraulic radius, r= Compute r	 r	0.11	0.00	0.43		
15 Channel slope, s	s			0.002	#DIV/0!	
16. Manning's roughness coefficient, n	n			0.035	0.035	
2 1	v	1	1	1.00		
$V = \frac{1.49r^2 s^2}{n}$	v			1.00	#010/01	
17 n						
18. Flow length, L	L	5974.66	1	19601.90	0.00	
-	-	557 1100				
$T_t = \frac{L}{3600V}$	T_channel			5.46	#DIV/0!	5.46
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	8.59
					Tc (mins)	515.56

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBas	sin_115			
				х	Y	
SubBasin 115				3274.56	490.71	
				3174.4	487.52	
		Sheet Flow	Slope AB	0.031849042		
	-	Sheet How	зюре Ав	3174.4	487.52	
				3174.4		
		Shallow Concentrated Flow	Classe BC	0.007146819		
		Shallow Concentrated Flow	Slope BC			
				343.77	467.29	
				0		
	_	Channel flow	Slope CD	2.90892E-05		
				0	467.28	
			Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0	0.17	0.00	
 Flow length, L (total L ≤ 300 ft) 	L	100.16	0	328.61	0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0	2.46	0.00	
5. Land slope, s	Land Slope	0.032	0	0.03	0.00	
	T_sheet			0.44		0.44
$T_t = \frac{0.007 (nL)^{0.8}}{P_t^{0.5} s^{0.4}}$						
$P_2^{0.3}s^{0.4}$						
5		Shallow Concentrated Flow				
	1	Shahow concentrated Flow				
	Cogmont	Segment 1 (SI)	Sogmont 2 (SI)	Formant 1 (Imporial)	Segment 2 (In	aporial)
7. Surface description (paved or unpaved)	Segment	Unpaved	Segment 2 (SI) N/A	Segment 1 (Imperial) Unpaved	N/A	iperial)
			'		'	
3. Flow length, L	L	2830.6	0			
9. Watercourse slope, s	s	0.007146819	0		0.00	
10. Average velocity, V (figure 3-1)	V	N/A		1.36	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= $20.3282S^{0.5}$						
$T_{i} = \frac{L}{L}$	T_shallow			1.89	#DIV/0!	1.89
$T_t = \frac{L}{3600V}$						
		Channel flow		-		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
12. Cross sectional flow area, a	area	14.45	0.00	155.56	0.00	
13. Wetted perimeter, pw	p w	29.53	0.00	96.89	0.00	
14. Hydraulic radius, r= Compute r	r			1.61		
15 Channel slope, s	s			0.000		
16. Manning's roughness coefficient, n	n			0.035		
2 1	V			0.31		
$V = \frac{1.49r^{\frac{2}{3}s^{\frac{1}{2}}}}{n}$	v			0.51	#010/0!	
17 n						
18. Flow length, L	1	343.77	1	1127.85	0.00	
	-	545.77				
$T_{\star} = \frac{L}{L}$	T_channe			1.00	#DIV/0!	1.00
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	3.33

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_116			
				х	Y	
SubBasin 116				3227.34	489.66	
				3127.13	486.87	
		Sheet Flow	Slope AB	0.027841533		
	-	Sheet Flow	зоре дв	3127.13	486.87	
				436.5	469.87	
	-	Shallow Concentrated Flow	Slope BC	0.006318223	409.87	
		Shallow concentrated Flow	зоревс	436.5	460.07	
				436.5	469.87 466.51	
		Channel flow	Class CD	0.007697595	466.51	
		Channel flow	Slope CD	0.007697595	100.54	
				0	466.51	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow		a		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
Flow length, L (total L ≤ 300 ft)	L	100.21			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4			0.00	
5. Land slope, s	Land Slope	0.028	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$	T_sheet			0.47	#DIV/0!	0.47
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
5						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
3. Flow length, L	L	2690.6	0	8827.53	0.00	
9. Watercourse slope, s	s	0.006318223	0	0.006	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		1.28	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			1.91	#DIV/0!	1.91
$T_t = \frac{L}{3600V}$				1.51		1.51
		Channel flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
						perier,
12. Cross sectional flow area, a	area	0.00	0.00	0.00	0.00	
13. Wetted perimeter, pw	p w	0.00			0.00	
14. Hydraulic radius, r= Compute r	r_**	0.00	0.00	#DIV/0!	#DIV/0!	
15 Channel slope, s	6			#DIV/0!	#DIV/0!	
15 Channel Slope, S 16. Manning's roughness coefficient, n	n			0.008	#DIV/0! 0.035	
2 1	n V					
$V = \frac{1.49r^{2}s^{\frac{1}{2}}}{n}$	v			#DIV/0!	#DIV/0!	
$v = \frac{1}{n}$						
17 18. Flow length, L	1	436.5	I	1432.09	0.00	
	-	436.5	1			
$T_{\rm t} = \frac{L}{L}$	T_channel			#DIV/0!	#DIV/0!	0.00
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	2.38
		1			Tc (mins)	142.78

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_117			
				х	Y	
SubBasin_117				10892.38	492.75	
				10792.02	490.57	
		Sheet Flow	Slope AB	0.021721802		
				10792.02		
				9538.7	483.18	
		Shallow Concentrated Flow	Slope BC	0.005896339		
				9538.7	483.18	
				1219.93	459.2	
		Shallow Concentrated Flow	Slope CD	0.002882638		
			·	1219.93	459.2	
				0		
		Channel flow	Slope DE	0.002229636		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	1
2. Manning's roughness coefficient, n (table 3-1)	n	0.17			,	
3. Flow length, L (total L \leq 300 ft)		100.36				
4. Two-year 24-hour rainfall, P2	P 2	62.4	0			
5. Land slope, s	Land Slope		0			
	T sheet	0.022		0.52		0.52
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	1_sheet			0.52	#01070.	0.52
$P_2^{0.5}s^{0.4}$	-					
0		Shallow Concentrated Flow				
		Shallow Concentrated Flow			<u>г г</u>	
	Cogmont	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	uporial)
7. Surface description (paved or unpaved)	Segment	Unpaved	N/A	Unpaved	N/A	iperial)
8. Flow length, L	L	1253.3		4111.94 0.006		
9. Watercourse slope, s	s V	0.005896339	0.002882638			
10. Average velocity, V (figure 3-1)	v	N/A		1.24	1.09	
Unpaved $V = 16.1345S^{0.5}$ Paved V= 20.3282S^{0.5}						
$T_t = \frac{L}{3600V}$	T_shallow			0.92	6.95	7.87
11 ¹ ^t 3600V						
		Channel flow				
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
12. Cross sectional flow area, a	area	4.17				
13. Wetted perimeter, pw	p_w	20.36	0.00	66.79		
14. Hydraulic radius, r= Compute r	r			0.67		
15 Channel slope, s	s			0.002	0.002	
16. Manning's roughness coefficient, n	n			0.035		
$V = \frac{1.49r^{\frac{2}{3}s^{\frac{1}{2}}}}{n}$	V			1.54	#DIV/0!	
V =						
1/	- <u> .</u>				1	
	IL.	1219.93	1	4002.40	0.00	
18. Flow length, L						0.72
I	T channe			0.72	#DIV/0! I	0.72
I	T_channel			0.72	#DIV/0!	0.72
$T_t = \frac{L}{L}$	T_channel			0.72	#DIV/0! Tc (Hr)	9.11

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_118			
				х	Y	
SubBasin 118				9267.13	491.28	
				9167.52	490.05	
		Sheet Flow	Slope AB	0.012348158		
		Sheet now	Siope Ab	9167.52	490.05	
				7302.5	466.07	
		Shallow Concentrated Flow	Slope BC	0.012857978	400.07	
		Shallow concentrated Flow	зюреве	7302.53	466.07	
				/302.55		
		Channel flow	Slava CD	0.001311874	456.49	
		Channel flow	Slope CD	0.001311874	156.10	
				0	456.49	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
 Flow length, L (total L ≤ 300 ft) 	L	99.61	0			
4. Two-year 24-hour rainfall, P2	P_2	62.4	0			
5. Land slope, s	Land Slope	0.012	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			0.64	#DIV/0!	0.64
$T_t = \frac{1}{B_0^{0.5} S^{0.4}}$						
6 -2 -						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	1865.0	0	6118.73	0.00	
9. Watercourse slope, s	s	0.012857978	0	0.013	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.83	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			0.93	#DIV/0!	0.93
$T_t = \frac{L}{3600V}$				0.55		0.55
••••		Channel flow			I	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
	beginener	beginene i (bi)	Segment 2 (Si)	beginene i (imperior)	Segment 2 (in	periory
12. Cross sectional flow area, a	area	46.24	0.00	497.69	0.00	
13. Wetted perimeter, pw	p w	40.24		132.03	0.00	
13. Wetted perimeter, pw 14. Hydraulic radius, r= Compute r	μ_w	40.24	0.00	3.77	#DIV/0!	
	6			0.001	#DIV/0! #DIV/0!	
15 Channel slope, s	s					
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{\frac{1.49r^3s^2}{n}}{r}$	v			3.73	#DIV/0!	
$v = \frac{1}{n}$						
17 18. Flow length, L	-	7302.53	1	23958.43	0.00	
· · · · · · · · · · · · · · · · · · ·		/302.53		23958.43	0.00	
$T_{L} - \underline{L}_{L}$	T_channel			1.78	#DIV/0!	1.78
$T_t = \frac{L}{3600V}$						
					Tc (Hr)	3.36
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)						

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_119			
				х	Y	
SubBasin_119				4587.17	489.45	
				4487.78	487.04	
		Sheet Flow	Slope AB	0.024247912		
		Sheet How	Зюре Ав	4487.78	487.04	
				2101.6	466.2	
		Shallow Concentrated Flow	Slope BC	0.008733588	400.2	
		Shallow Concentrated Flow	зюре вс		100.0	
				2101.59	466.2	
				1133.44	454.8	
		Channel flow	Slope CD	0.011775035		
				1133.44	454.8	
				0	451.78	
		Channel flow	Slope DE	0.002664455		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
Flow length, L (total L ≤ 300 ft)	L	99.39	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.024	0	0.02	0.00	
$0.007(nL)^{0.8}$	T_sheet			0.49	#DIV/0!	0.49
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	1	2386.2	0		0.00	
9. Watercourse slope, s	5	0.008733588	0		0.00	
10. Average velocity, V (figure 3-1)	V	N/A		1.51	0.00	
Unpaved $V = 16.1345S^{0.5}$	· · ·			1.51	0.00	
Paved V= 20.3282S ^{0.5}						
7	T shallow			1.44	#DIV/0!	1.44
$T_t = \frac{L}{3600V}$				1.44	#01070:	1.44
11 3000		Channel flow				
	Cogmont	Segment 1 (SI)	Sagmont 2 (SI)	Cogmont 1 (Imporial)	Sogmont 2 (Im	a orial)
	Segment	(Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
		22.22	254.04	247.00	2744.47	
12. Cross sectional flow area, a	area	32.32	254.94		2744.17	
13. Wetted perimeter, pw	p_w	34.41	125.66		412.27	
14. Hydraulic radius, r= Compute r	r			3.08	6.66	
15 Channel slope, s	s			0.012	0.003	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{3}s^{2}}{n}$	V			9.78	7.78	
$V = \frac{1}{n}$						
	<u> </u>		<u> </u>			
18. Flow length, L	L	968.15	1133.44	3176.35	3718.64	
T L	T channel			0.09	0.13	0.22
$T_t = \frac{L}{3600V}$				0.05	0.15	
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	-				Tc (Hr)	2.16
20. Watershea or subarea re or reladu rein steps 0, 11, dilu 19)	-					129.38
	1	1	1	1	Tc (mins)	129.38

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_120			
				х	Y	
SubBasin_120				6026.88	480.27	
				5926.75	477.95	
		Sheet Flow	Slope AB	0.023169879		
				5926.75	477.95	
				4492.3	473.31	
		Shallow Concentrated Flow	Slope BC	0.003234779		
			· ·	4492.34	473.31	
				0		
		Channel flow	Slope CD	0.003746377		
				0	456.48	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0	0.17	0.00	
 Flow length, L (total L ≤ 300 ft) 	L	100.13	0	328.51	0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.023	0	0.02	0.00	
	T_sheet			0.50	#DIV/0!	0.50
$T_t = \frac{0.007 (nL)^{0.8}}{P_s^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow	•	•		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	1434.4	0	4706.07	0.00	
9. Watercourse slope, s	s	0.003234779	0	0.003	0.00	
10. Average velocity, V (figure 3-1)	V	N/A		0.92	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
	T_shallow			1.42	#DIV/0!	1.42
$T_t = \frac{L}{3600V}$						
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	32.32				
13. Wetted perimeter, pw	p_w	34.41	0.00			
14. Hydraulic radius, r= Compute r	r			3.08		
15 Channel slope, s	s			0.004	#DIV/0!	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			5.52	#DIV/0!	
$V = \frac{1}{n}$						
17 "						
18. Flow length, L	L	4492.34	0	14738.65	0.00	
T - L	T_channe			0.74	#DIV/0!	0.74
$T_t = \frac{2}{3600V}$						
	_	1				
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	2.67

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_121			
				х	Y	
SubBasin_121				10892.38	492.75	
				10792.42	490.57	
		Sheet Flow	Slope AB	0.021808723		
				10792.42	490.57	
				7150.2	479.76	
		Shallow Concentrated Flow	Slope BC	0.002968003		
				7150.24	479.76	
				2686.89	463.08	
		Shallow Concentrated Flow	Slope CD	0.003737103		
			•	2686.89	463.08	
				0		
		Channel flow	Slope DE	0.002448928		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17			1	
3. Flow length, L (total L \leq 300 ft)	1	99.96				
4. Two-year 24-hour rainfall, P2	P 2	62.4				
5. Land slope, s	Land Slope		0		0.00	
	T sheet	0.022		0.51		0.51
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	sneet			0.01		0.01
6 P2 ^{0.5} s ^{0.4}						
		Shallow Concentrated Flow				
		Shallow Concentrated Flow				
	Sogmont I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	porial)
7. Surface description (paved or unpaved)	Segmenti	Unpaved	N/A	Unpaved	N/A	perial)
8. Flow length, L	-	3642.2	4463.35	11949.41	14643.54	
9. Watercourse slope, s	L.	0.002968003		0.003	0.00	
1.2	s V		0.003737103	0.003	1.24	
10. Average velocity, V (figure 3-1)	V	N/A		0.88	1.24	
Unp <i>aved V</i> = $16.1345S^{0.5}$ Paved V= $20.3282S^{0.5}$						
1	T					
T. =	T_shallow			3.78	3.27	7.05
11 ²⁷ 3600V						
		Channel flow	C	C		
	segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. 0					0.55	
12. Cross sectional flow area, a	area	27.98				
13. Wetted perimeter, pw	p_w	30.48	0.00	99.99		
14. Hydraulic radius, r= Compute r	r			3.01	#DIV/0!	
15 Channel slope, s	S			0.002		
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{\frac{149r^3s^2}{n}}{r}$	V			4.39	#DIV/0!	
$V = \frac{n}{n}$						
	+.				0045.55	
18. Flow length, L	L	2686.89	2686.89	8815.26	8815.26	
$T - \underline{L}$	T_channel			0.56	#DIV/0!	0.56
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	8.12

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

	Time	of Concentration TR55 SubBas	sin_122			
				х	Y	
SubBasin_122				4557.55	474.31	
				4450.35	473.68	
		Sheet Flow	Slope AB	0.005876866		
			Sieperio	4450.35	473.68	
				1926.4	458.76	
		Shallow Concentrated Flow	Slope BC	0.005911393		
				1926.41	458.76	
				207.53	443.13	
		Shallow Concentrated Flow	Slope CD	0.00909313		
				207.53	443.13	
				0		
		Channel flow	Slope DE	0.000337301		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Ir	nperial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	<i>,</i>
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L ≤ 300 ft)	L	107.2	0		0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0	2.46	0.00	
5. Land slope, s	Land Slope	0.006	0	0.01	0.00	
$0.007(nL)^{0.8}$	T_sheet			0.92	#DIV/0!	0.92
$T_t = \frac{0.007(nL)^{0.8}}{P_{0.5}^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Ir	nperial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	2523.9	1718.88	8280.64	5639.37	
9. Watercourse slope, s	s	0.005911393	0.00909313	0.006	0.01	
10. Average velocity, V (figure 3-1)	V	N/A		1.24	1.94	
Unp <i>aved V</i> = $16.1345S^{0.5}$ Paved V= $20.3282S^{0.5}$						
I	T shallow			1.85	0.81	2.66
$T_t = \frac{L}{3600V}$	_					
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Ir	nperial)
12. Cross sectional flow area, a	area	1150.01	0.00	12378.62	0.00	
13. Wetted perimeter, pw	p_w	207.41	0.00	680.48	0.00	
14. Hydraulic radius, r= Compute r	r			18.19	#DIV/0!	
15 Channel slope, s	s			0.000	0.000	
16 Manning's roughness coefficient in	n			0.035	0.035	
$V = \frac{1.49r^3s^2}{n}$	V			5.41	#DIV/0!	
$V = \frac{1.457532}{7}$						
18. Flow length, L	L	207.53	0	680.87	0.00	
$T_{L} - \underline{L}$	T_channel			0.03	#DIV/0!	0.03
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	3.62

	Project No:	5591
	Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	-			
				х	Y	
SubBasin_123				12398.15	466.08	
				12294.51	464.15	
		Sheet Flow	Slope AB	0.018622154		
				12294.51	464.15	
				10666.5	442.32	
		Shallow Concentrated Flow	Slope BC	0.013408844		
				10666.48	442.32	
				0	392.52	
		Channel flow	Slope CD	0.004668832		
				0	392.52	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment II	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.8	0	0.80	0.00	
 Flow length, L (total L ≤ 300 ft) 	L	103.64			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0	2.46	0.00	
5. Land slope, s	Land Slope	0.019	0	0.02	0.00	
	T_sheet			1.95	#DIV/0!	1.95
$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$						
6 P2 S						
	-	Shallow Concentrated Flow				
	Segment II	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)	Ŭ	Unpaved	N/A	Unpaved	N/A	
3. Flow length, L	L	1628.0			0.00	
9. Watercourse slope, s	s	0.013408844			0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.87	0.00	
Unpaved $V = 16.1345S^{0.5}$	-					
Paved V= 20.3282S ^{0.5}						
_ L	T shallow			0.79	#DIV/0!	0.79
$T_t = \frac{L}{3600V}$	_					
		Channel flow	l.			
	Segment II	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	942.14	0.00	10141.12	0.00	
13. Wetted perimeter, pw	p_w	168.58				
14. Hydraulic radius, r= Compute r	r			18.34		
15 Channel slope, s	s			0.005	#DIV/0!	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			20.23		
$V = \frac{1.497352}{1.497352}$	-					
17 n						
18. Flow length, L	L	10666.48	0	34995.01	0.00	
L	Tahaa			0.40	#DI) (/01	0.42
$T_t = \frac{L}{3600V}$	T_channel			0.48	#DIV/0!	0.48
	-				T= (11=)	2.22
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	_				Tc (Hr)	3.22
					Tc (mins)	

	Project No:	5591
	Project Name:	Durham Creek FPM
		175010

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_124			
				х	Y	
SubBasin_124				7728.3	467.94	
				7628.56	466.95	
		Sheet Flow	Slope AB	0.009925807		
				7628.56	466.95	
				814.3	397.95	
		Shallow Concentrated Flow	Slope BC	0.010125884		
				814.34	397.95	
				0		
		Channel flow	Slope CD	0.006864455		
			·	0	392.36	
		N/A	Slope DE	#DIV/0!		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17			'	
3. Flow length, L (total L \leq 300 ft)	L	99.74			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4				
5. Land slope, s	Land Slope				0.00	
	T_sheet			0.70	#DIV/0!	0.70
$T_t = \frac{0.007 (nL)^{0.8}}{R^{0.5} s^{0.4}}$						
6 P2-S.						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	L	6814.2			-	
9. Watercourse slope, s	s	0.010125884				
10. Average velocity, V (figure 3-1)	V	N/A		1.62	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
_ L	T shallow			3.82	#DIV/0!	3.82
$T_t = \frac{L}{3600V}$	_					
		Channel flow	P			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
					Γ΄ Ì	· · ·
12. Cross sectional flow area, a	area	2.50	0.00	26.92	0.00	
13. Wetted perimeter, pw	p_w	13.54			0.00	
14. Hydraulic radius, r= Compute r	r			0.61	#DIV/0!	
15 Channel slope, s	s			0.007	#DIV/0!	
16 Manning's roughness coefficient in	n			0.035	0.035	
2 1 1 40=2=2	V			2.53	#DIV/0!	
$V = \frac{\frac{1.49r^3s^2}{n}}{n}$				2.00		
17 n						
18. Flow length, L	L	814.34	0	2671.72	0.00	
L	T channe			0.29	#DIV/01	0.29
$T_t = \frac{L}{3600V}$				0.29	#DIV/0!	0.29
					To (Ur)	4.02
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr) Tc (mins)	4.82 289.35
						789 35

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_125			
				х	Y	
SubBasin_125				8021.68	442.7	
				7920.91	431.95	
		Sheet Flow	Slope AB	0.106678575		
				7920.91	431.95	
				4183.9	391.97	
		Shallow Concentrated Flow	Slope BC	0.010698249		
			·	4183.85	391.97	
				3520.44	388.3	
		Channel flow	Slope CD	0.005532024		
			·	3520.44	388.3	
				0	374.04	
		Channel flow	Slope DE	0.00405063		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.8			0.00	
3. Flow length, L (total L \leq 300 ft)	L	100.77	0		0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0		0.00	
5. Land slope, s	Land Slope				0.00	
	T sheet	0.207		0.95	#DIV/0!	0.95
$T_t = \frac{0.007(nL)^{0.8}}{P_0^{0.5} s^{0.4}}$						
6 P2 Star	-					
•		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
7. Surface description (paved or unpaved)		Unpaved	N/A	Unpaved	N/A	
8. Flow length, L	1	3737.1	0		0.00	
9. Watercourse slope, s	s	0.010698249			0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.67	0.00	
Unpaved $V = 16.1345S^{0.5}$				1.07	0.00	
Paved V= 20.32825 ^{0.5}						
I	T shallow			2.04	#DIV/0!	2.04
$T_t = \frac{L}{3600V}$	<u></u> 5Hallo II			2.01		2.01
		Channel flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	6.23	29.61	67.05	318.69	
13. Wetted perimeter, pw	p w	13.81	31.60	45.31	103.66	
14. Hydraulic radius, r= Compute r	r	10:01	51.00	1.48	3.07	
15 Channel slope, s	s		1	0.006	0.004	
16. Manning's roughness coefficient, n	n			0.035	0.035	
	v			4.11	5.73	
$V = \frac{1.49r^{\frac{2}{3}s^{\frac{1}{2}}}}{n}$				4.11	5.75	
17 n						
18. Flow length, L	L	663.41	3520.44	2176.54	11550.00	
T	T sheet			0.45		0.71
$T_t =$	T_channe			0.15	0.56	0.71
	_				T (11)	0.75
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	3.70
	1				Tc (mins)	221.73

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBas	sin_126			
				х	Y	
SubBasin_126				7003.33	416.95	
				6902.18	412.33	
		Sheet Flow	Slope AB	0.04567474		
				6902.18		
				6640.2	398.3	
		Shallow Concentrated Flow	Slope BC	0.053551662	550.5	
				6640.19	398.3	
				3142.74		
		Shallow Concentrated Flow	Slope CD	0.003536863		
		Shahow concentrated now		3142.74		
				0		
		Channel flow	Slope DE	0.003802414		
		Sheet Flow	Slope DE	0.005602414		
	Sogmont		Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	(norial)
1. Surface description (table 3-1)	Segmenti		N/A	Residue cover > 20%	N/A	iperidi)
 Surface description (table 3-1) Manning's roughness coefficient, n (table 3-1) 	n	Residue cover > 20%	0		'	
2. Manning s roughness coefficient, n (table 3-1) 3. Flow length, L (total L \leq 300 ft)		101.15	0			
a. Flow length, L (total L ≤ 300 π) 4. Two-year 24-hour rainfall, P2	P 2	62.4	0			
· · ·	-		0			
5. Land slope, s	Land Slope	0.046	0	0.05		0.39
$T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	T_sheet			0.39	#DIV/0!	0.39
$r_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$						
5 ~						
		Shallow Concentrated Flow		r		
				a		
	Segment I		Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	iperial)
7. Surface description (paved or unpaved)			N/A	Unpaved	N/A	
3. Flow length, L	L	262.0	3497.45	859.55		
9. Watercourse slope, s	s	0.053551662	0.003536863	0.054		
10. Average velocity, V (figure 3-1)	V	N/A		3.73	1.21	
Unp <i>aved</i> $V = 16.1345S^{0.5}$ Paved V= 20.3282S^{0.5}						
$T_t = \frac{L}{3600V}$	T_shallow			0.06	2.64	2.70
11 ¹ ^t 3600V						
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	iperial)
12. Cross sectional flow area, a	area	3.94	0.00	42.42		
13. Wetted perimeter, pw	p_w	13.41	0.00	44.00		
14. Hydraulic radius, r= Compute r	r			0.96		
15 Channel slope, s	s			0.004		
16. Manning's roughness coefficient, n	n			0.035		
$V = \frac{1.49r^2s^2}{n}$	V			2.56	#DIV/0!	
$V = \frac{n}{n}$						
1/						
18. Flow length, L	L	3142.74	0	10310.83	0.00	
T _ L	T channel			1.12	#DIV/0!	1.12
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	4.20

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_127			
				Х	Y	
SubBasin_127				7287.21	401.09	
				7186.08	399.81	
		Sheet Flow	Slope AB	0.012656976		
		Sheet now		7186.08		
				6037.9	378.25	
		Shallow Concentrated Flow	Slope BC	0.018777217		
		Shallow concentrated Flow	зоревс	6037.88		
				4357.78		
		Challen Constant of Flam	Class CD	0.004910422	370	
		Shallow Concentrated Flow	Slope CD		270	
	-			4357.78		
				0		
		Channel flow	Slope DE	0.001778428		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)	_	Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
Flow length, L (total L ≤ 300 ft)	L	101.13				
4. Two-year 24-hour rainfall, P2	P_2	62.4				
5. Land slope, s	Land Slope	0.013	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			0.65	#DIV/0!	0.65
$T_t = \frac{1}{B_0^{0.5} s^{0.4}}$						
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	1148.2	1680.1	3767.06	5512.14	
9. Watercourse slope, s	s	0.018777217				
10. Average velocity, V (figure 3-1)	v	N/A		2.21	1.13	
Unpaved $V = 16.1345S^{0.5}$	-					
Paved V= $20.3282S^{0.5}$						
,	T shallow			0.47	1.35	1.83
$T_t = \frac{L}{3600V}$	1_shahow			0.47	1.55	1.05
	-	Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	(nerial)
	Jegmenti	(Segment 1 (SI)	Segment 2 (SI)	Segment I (impenal)	Segment 2 (iii	ipenai)
12. Cross sectional flow area, a	area	2.04	0.00	21.98	0.00	
		17.03				
13. Wetted perimeter, pw	p_w	17.03	0.00			
14. Hydraulic radius, r= Compute r	r			0.39		
15 Channel slope, s	s			0.002		
16. Manning's roughness coefficient, n	n			0.035		
$V = \frac{1.49r^{\frac{2}{3}s^{\frac{1}{2}}}}{n}$	V			0.96	#DIV/0!	
$V = \frac{1}{n}$						
	1.	4057 70		14007.40	0.00	
18. Flow length, L	L	4357.78	0	14297.18	0.00	
T _ L	T_channel			4.12	#DIV/0!	4.12
		+		1		
$I_t = \frac{1}{3600V}$						
$T_t = \frac{L}{3600V}$ 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	-				Tc (Hr)	6.59

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_128			
				х	Y	
SubBasin 128				4562.58	405.38	
				4461.69	401.68	
		Sheet Flow	Slope AB	0.036673605		
		Sheet now		4461.69	401.68	
	-			3312.2	376.61	
		Shallow Concentrated Flow	Slope BC	0.021810241	370.01	
	_	Shallow concentrated Flow	зюревс	3312.23	376.61	
	-			2619.64	370.01	
		Shallow Concentrated Flow	Slope CD	0.007623558	3/1.33	
	-	Shallow concentrated Flow	Slope CD	2619.64	371.33	
				0		
		Channel flow	Slope DE	0.00345849		
		Sheet Flow				
	segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	periai)
1. Surface description (table 3-1)	-	Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L ≤ 300 ft)		100.89	0			
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.037	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_0^{0.5}s^{0.4}}$	T_sheet			0.42	#DIV/0!	0.42
$I_t = \frac{P_0^{0.5} s^{0.4}}{P_0^{0.5} s^{0.4}}$						
5						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	1149.5	692.59	3771.19	2272.28	
9. Watercourse slope, s	s	0.021810241	0.007623558	0.022	0.01	
10. Average velocity, V (figure 3-1)	V	N/A		2.38	1.41	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			0.44	0.45	0.89
$T_t = \frac{L}{3600V}$						
		Channel flow	Į.		1 1	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	16.45	0.00	177.07	0.00	
13. Wetted perimeter, pw	p w	26.98	0.00		0.00	
14. Hydraulic radius, r= Compute r	r_"	20.98	0.00	2.00	#DIV/0!	
15 Channel slope, s	6			0.003	0.003	
	n			0.003	0.003	
2 1	n V				#DIV/0!	
$V = \frac{\frac{1.49r^3s^2}{n}}{n}$	V			3.97	#DIV/0!	
$v = \frac{1}{n}$						
17 18. Flow length, L	1	2619.64	0	8594.62	0.00	
		2619.64	0	0394.02	0.00	
$T_{\rm t} = \frac{L}{L}$	T_channel			0.60	#DIV/0!	0.60
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	1.91
					Tc (mins)	114.57

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBas	sin_129			
				х	Y	
SubBasin 129				15686.98	477.16	
				15574.58		
		Sheet Flow	Slope AB	0.008718861		
		Sheet Flow	Зюре Ав	15574.58		
				10755.7		
		Shallow Concentrated Flow	Slope BC	0.003946959		
		Shallow concentrated Flow	зюревс	10755.68		
				3834.59		
		Channel flow	Slave CD	0.006016393		
		Channel flow	Slope CD			
				3834.59		
				0		
		Channel flow	Slope DE	0.010752127		
	1	Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)	-	Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17	0			
Flow length, L (total L ≤ 300 ft)	L	112.4	0			
4. Two-year 24-hour rainfall, P2	P_2	62.4	0			
5. Land slope, s	Land Slope	0.009	0		0.00	
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			0.82	#DIV/0!	0.82
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
6 2 2						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	4818.9	0	15810.04	0.00	
9. Watercourse slope, s	s	0.003946959	0	0.004	0.00	
10. Average velocity, V (figure 3-1)	v	N/A		1.01	0.00	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
_ L	T_shallow			4.33	#DIV/0!	4.33
$T_t = \frac{L}{3600V}$						
	-	Channel flow	Į	1	1 1	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Cross sectional flow area, a	area	5.47	30.43	58.86	327.50	
13. Wetted perimeter, pw	p w	28.79	50.35			
14. Hydraulic radius, r= Compute r	r	20.75	50.35	0.62	1.98	
15 Channel slope, s				0.002		
16. Manning's roughness coefficient, n	n			0.008		
2 1	n V				6.97	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			2.41	6.97	
$v = \frac{n}{n}$						
19 18. Flow length, L	1	6921.09	3834.59	22706.99	12580.68	
	-	0921.09	3834.35			
$T_{\star} = \frac{L}{L}$	T_channel			2.62	0.50	3.12
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	8.27
					Tc (mins)	496.08

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	i ime	of Concentration TR55 SubBa	sin_130			
				х	Y	
SubBasin_130				6049.21	431.78	
				5948.00	429.03	
		Sheet Flow	Slope AB	0.027171228		
				5948.00	429.03	
				4625.89	399.30	
		Shallow Concentrated Flow	Slope BC	0.022486782		
				4625.89	399.30	
				832.62	374.85	
		Shallow Concentrated Flow	Slope CD	0.006445626		
			·	832.62	374.85	
				0		
		Channel flow	Slope DE	0.000672576		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
L. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
3. Flow length, L (total L \leq 300 ft)	1	101.21	0		0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0			
5. Land slope, s	Land Slope		0		0.00	
	T sheet	0.027		0.48		0.48
$T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	1_sheet			0.40	#010/01	0.40
$P_2^{0.3}s^{0.4}$						
J		Shallow Concentrated Flow				
		Shallow Concentrated Flow				
	Cogmont	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	anorial)
7. Surface description (paved or unpaved)	Jegmenti	Unpaved	Unpaved	Unpaved	Unpaved	ipenal)
3. Flow length, L		1322.1	3793.27	4337.63		
). Watercourse slope, s		0.022486782	0.006445626	4337.03	0.01	
I. Average velocity, V (figure 3-1)	V	N/A	0.006443626	2.42	1.30	
Unpaved $V = 16.1345S^{0.5}$	v	N/A		2.42	1.50	
Paved V = 10.13455^{-1}						
1	T 11 11 1			0.50	2.67	2.47
T. =	T_shallow			0.50	2.67	3.17
11 ¹ 3600V		Channel flow				
	Comment		Commont 2 (SI)	Comment 1 (Incominal)	Segment 2 (In	a a a si a lì
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (in	iperial)
12 Constantional flow and a				10.00	0.00	
12. Cross sectional flow area, a	area	1.21	0.00	12.99		
L3. Wetted perimeter, pw	p_w	20.12	0.00		0.00	
14. Hydraulic radius, r= Compute r	r			0.20		
L5 Channel slope, s	s			0.001	0.001	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	V			0.37	#DIV/0!	
$v = \frac{1}{n}$						
L/	-	832.62	0	2731.69	0.00	
18. Flow length, L		832.62	0	2/31.69	0.00	
$T_{L} - \underline{L}_{L}$	T_channel			2.03	#DIV/0!	2.03
$T_t = \frac{L}{3600V}$	_					
					Tc (Hr)	5.67
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)						

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_131			
				х	Y	
SubBasin_131				5704.39	401.55	
				5603.83	398.66	
		Sheet Flow	Slope AB	0.028739061		
	-		sisperie -	5603.83	398.66	
				4006.36		
	-	Shallow Concentrated Flow	Slope BC	0.015311712		
			siope be	4006.36		
				1126.79		
		Channel flow	Slope CD	0.002208663		
		chainernow		1126.79		
				0		
		Channel flow	Slope DE	0.012504548		
		Sheet Flow	Slope DE	0.012504546		
	Sogmont	Sheet Flow	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	(porial)
1. Surface description (table 3-1)	Segment	Residue cover > 20%	N/A	Residue cover > 20%	N/A	iperiar)
1. Surface description (table 3-1) 2. Manning's roughness coefficient, n (table 3-1)	n	Residue cover > 20%				
	n					
3. Flow length, L (total L ≤ 300 ft)	P 2	100.56				
4. Two-year 24-hour rainfall, P2	P_2 Land Slop	62.4 0.029				
5. Land slope, s		e 0.029	0			0.46
$T_t = \frac{0.007(nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			0.46	#DIV/0!	0.46
$I_t = \frac{P_2^{0.5} S^{0.4}}{P_2^{0.5} S^{0.4}}$						
6		L				
		Shallow Concentrated Flow	1			
	-			a		
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	1597.5				
9. Watercourse slope, s	S	0.015311712	0			
10. Average velocity, V (figure 3-1)	V	N/A		2.00	0.00	
Unpaved $V = 16.1345S^{0.5}$ Paved V= 20.3282S^{0.5}						
$T_t = \frac{L}{3600V}$	T_shallow	1		0.73	#DIV/0!	0.73
11 ¹ 3600V						
		Channel flow				
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
	_					
12. Cross sectional flow area, a	area	749.50		8067.59		
13. Wetted perimeter, pw	p_w	186.09	195.10	610.53		
14. Hydraulic radius, r= Compute r	r			13.21	4.60	
15 Channel slope, s	s			0.002		
16. Manning's roughness coefficient, n	n			0.035		
$1.49r^{\frac{2}{3}s^{\frac{1}{2}}}$	V			11.18	13.17	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$						
1/	-					
18. Flow length, L	L	2879.57	1126.79	9447.41	3696.82	
_ L	T channe	1		0.23	0.08	0.31
		1				
$T_t = \frac{1}{3600V}$					1 1	
$T_t = \frac{L}{3600V}$ 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	1.50

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_132			
				Х	Y	
SubBasin_132				3948.47	401.51	
				3848.27	399.38	
		Sheet Flow	Slope AB	0.021257485		
				3848.27	399.38	
				3242.00		
		Shallow Concentrated Flow	Slope BC	0.018094248		
				3242.00	388.41	
				2902.07	362.32	
		Shallow Concentrated Flow	Slope CD	0.076751096	502.52	
	-		5100000	2902.07	362.32	
	-			0		
		Channel flow	Slope DE	0.002949619		
		Sheet Flow	Slope DE	0.002949019		
	Cogmont	Sheet Flow	Sogmont 2 (SI)	Segment 1 (Imperial)	Commont 2 //-	norial
1 Conference descriptions (Apple 2, 4)	Segment		Segment 2 (SI) N/A		Segment 2 (In	iperial)
1. Surface description (table 3-1)	+	Residue cover > 20%		Residue cover > 20%	N/A 0.00	
2. Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
3. Flow length, L (total L ≤ 300 ft)	L	100.2			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4				
5. Land slope, s	Land Slope	0.021	0		0.00	
$T_t = \frac{0.007 (nL)^{0.8}}{P_c^{0.5} s^{0.4}}$	T_sheet			0.52	#DIV/0!	0.52
$T_t = \frac{1}{P_0^{0.5} s^{0.4}}$						
5						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	606.3	339.93	1989.07	1115.26	
9. Watercourse slope, s	s	0.018094248	0.076751096	0.018	0.08	
10. Average velocity, V (figure 3-1)	V	N/A		2.17	4.47	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
L	T shallow			0.25	0.07	0.32
$T_t = \frac{L}{3600V}$				0.25	0.07	0.02
		Channel flow			1 1	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nerial)
	Jegmener	Segment 1 (Si)	Segment 2 (SI)	Segment I (imperial)	Segment 2 (in	ipenaly
12. Cross sectional flow area, a	area	26.79	0.00	288.42	0.00	
12. Cross sectional now area, a 13. Wetted perimeter, pw	p w	38.78			0.00	
	Ψ	38.78	0.00			
14. Hydraulic radius, r= Compute r				2.27	#DIV/0!	
15 Channel slope, s	S			0.003	0.003	
16. Manning's roughness coefficient, n	n			0.035	0.035	
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			3.99	#DIV/0!	
$v = \frac{1}{n}$						
17	<u> </u>	2002.07	1	0521.22	0.00	
18. Flow length, L	- <u>L</u>	2902.07	0	9521.23	0.00	
T _ L	T_channe			0.66	#DIV/0!	0.66
$T_t = \frac{L}{3600V}$	_					
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	1.51

Project No:	5591
Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_133			
				х	Y	
SubBasin 133				3495.41	380.61	
				3395.01	377.38	
		Sheet Flow	Slope AB	0.032171315		
	-			3395.01	377.38	
				2929.14	367.68	
		Shallow Concentrated Flow	Slope BC	0.020821259		
			•	2929.14	367.68	
				697.06	352.80	
		Shallow Concentrated Flow	Slope CD	0.006666428		
			-	697.06	352.80	
				0	350.80	
		Channel flow	Slope DE	0.002869193		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Residue cover > 20%	N/A	Residue cover > 20%	N/A	
Manning's roughness coefficient, n (table 3-1)	n	0.17			0.00	
 Flow length, L (total L ≤ 300 ft) 	L	100.4			0.00	
4. Two-year 24-hour rainfall, P2	P_2	62.4	0		0.00	
5. Land slope, s	Land Slope	0.032	0		0.00	
$0.007(nL)^{0.8}$	T_sheet			0.44	#DIV/0!	0.44
$T_t = \frac{0.007(nL)^{0.8}}{B_t^{0.5} s^{0.4}}$						
6 2 2						
		Shallow Concentrated Flow		,		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	465.9			7323.10	
9. Watercourse slope, s	s	0.020821259	0.006666428		0.01	
10. Average velocity, V (figure 3-1)	V	N/A		2.33	1.32	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.32825 ^{0.5}						
$T_t = \frac{L}{3600V}$	T_shallow			0.18	1.54	1.73
11 ¹ ^t 3600V						
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
12. Come and the second of		244.02		2270.00	0.00	
12. Cross sectional flow area, a	area	211.82		2279.96	0.00	
13. Wetted perimeter, pw	p_w	133.27	0.00	-	0.00	
14. Hydraulic radius, r= Compute r	r			5.21	#DIV/0!	
15 Channel slope, s	S			0.003	0.003	
16. Manning's roughness coefficient, n 2 1	n V			0.035	0.035	
$V = \frac{\frac{1.49 r^2 s^2}{n}}{n}$	v			6.86	#DIV/0!	
$V = \frac{n}{n}$						
19 18. Flow length, L	1	697.06	0	2286.94	0.00	
$T_t = \frac{L}{3600V}$	T_channe			0.09	#DIV/0!	0.09
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	2.26
					Tc (mins)	135.67

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_134			
				х	Y	
SubBasin_134				1696.83	360.48	
————				1595.14	358.41	
		Sheet Flow	Slope AB	0.020355984		
				1595.14	358.41	
				344.79	350.83	
		Shallow Concentrated Flow	Slope BC	0.006062303		
				344.79	350.83	
				45.78	342.48	
		Shallow Concentrated Flow	Slope CD	0.027925487	0.11.10	
				45.78	342.48	
				0	342.20	
		Channel flow	Slope DE	0.006116208		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
L. Surface description (table 3-1)		Heavy Underbush	N/A	Heavy Underbush	N/A	,
2. Manning's roughness coefficient, n (table 3-1)	n	0.8			0.00	
3. Flow length, L (total L \leq 300 ft)	L	101.69	0		0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0		0.00	
5. Land slope, s	Land Slope				0.00	
	T sheet		-	1.85		1.85
$T_t = \frac{0.007 (nL)^{0.8}}{P_t^{0.5} s^{0.4}}$						
P2S*						
-		Shallow Concentrated Flow	1			
	Segment	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
3. Flow length, L	L	1250.4	299.01	4102.20	981.00	
9. Watercourse slope, s	s	0.006062303	0.027925487	0.006	0.03	
10. Average velocity, V (figure 3-1)	V	N/A		1.26	2.70	
Unpaved V = $16.1345S^{0.5}$,		1.20		
Paved V= $20.3282S^{0.5}$						
1	T shallow			0.91	0.10	1.01
$T_t = \frac{L}{3600V}$				0.01		
	-!	Channel flow	1	1		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
				U · · · · · · · · · · · · · · · · · · ·		,
12. Cross sectional flow area, a	area	0.30	0.00	3.23	0.00	
13. Wetted perimeter, pw	p_w	1.70		5.58	0.00	
L4. Hydraulic radius, r= Compute r	r	1.70	0.00	0.58	#DIV/0!	
15 Channel slope, s	s			0.006	0.006	
16 Manning's roughness coefficient n	n			0.035	0.035	
	v	1		2.31	#DIV/0!	
$V = \frac{\frac{2}{149r^3s^2}}{n}$	-			2.51		
17 n						
18. Flow length, L	L	45.78	0	150.20	0.00	
-	T 1 1 1 1					
$T_{\star} =$	T_channel			0.02	#DIV/0!	0.02
					T. (11.)	
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	2.88
					Tc (mins)	172.66

Project No:	5591
Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_135			
			_	х	Y	
SubBasin 135				1115.94	358.66	
				1015.19	355.59	
		Sheet Flow	Slope AB	0.030471464		
	-			1015.19	355.59	
				957.00	353.13	
		Shallow Concentrated Flow	Slope BC	0.042275305		
				957.00	353.13	
				28.24	342.76	
		Shallow Concentrated Flow	Slope CD	0.011165425		
				28.24	342.76	
				8.54	340.34	
	-	Channel flow	Slope DE	0.12284264	5 10.5 1	
		Sheet Flow	SIGPE DE	0.12204204		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
1. Surface description (table 3-1)		Dense grasses, including species		Dense grasses, including		
2. Manning's roughness coefficient, n (table 3-1)	n	0.24	0		0.00	
3. Flow length, L (total L \leq 300 ft)	1	100.75			0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0		0.00	
5. Land slope, s	Land Slope				0.00	
	T sheet	0.030		0.60		0.60
$T_t = \frac{0.007 (nL)^{0.8}}{P_s^{0.5} s^{0.4}}$						
6 P2 ^{0.3} S ^{0.4}						
		Shallow Concentrated Flow			II	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	(nerial)
7. Surface description (paved or unpaved)	Jegmener	Unpaved	Unpaved	Unpaved	Unpaved	ipenaly
8. Flow length, L	1	58.2	928.76		3047.11	
9. Watercourse slope, s	c .	0.042275305		0.042	0.01	
10. Average velocity, V (figure 3-1)	v	N/A	0.011105 125	3.32	1.70	
Unpaved $V = 16.1345S^{0.5}$	•	NA		5.52	1.70	
Paved V = $20.3282S^{0.5}$						
1	T shallow			0.02	0.50	0.51
$T_t = \frac{L}{3600V}$	1_shahow			0.02	0.50	0.51
		Channel flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
	Joeginetici					
12. Cross sectional flow area, a	area	0.07	0.00	0.72	0.00	
13. Wetted perimeter, pw	p w	4.43			0.00	
14. Hydraulic radius, r= Compute r	r		0.00	0.05	#DIV/0!	
15 Channel slope, s				0.123	0.123	
16 Manning's roughness coefficient in	n			0.035	0.035	
	v			2.00		
$V = \frac{\frac{2 1}{149 r^3 s^2}}{n}$	•			2.00	#DIV/0:	
17 n						
18. Flow length, L	L	19.7	0	64.63	0.00	
1	-		-			
$T_t =$	T_channel			0.01	#DIV/0!	0.01
					- (1.)	
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	1.12
					Tc (mins)	67.10

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_100	1		
				х	Y	
SubBasin_136				3340.56	390.39	
				3237.03	388.58	
		Sheet Flow	Slope AB	0.017482855		
			•	3237.03	388.58	
				1860.38	377.05	
		Shallow Concentrated Flow	Slope BC	0.008375404		
			•	1860.38	377.05	
				1211.83	341.29	
		Shallow Concentrated Flow	Slope CD	0.055138386		
				1211.83	341.29	
				0	333.32	
		Channel flow	Slope DE	0.00657683	333.52	
		Sheet Flow	Siope DE	0.00037003		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	nerial)
1. Surface description (table 3-1)	Jegnetter	Residue cover > 20%	N/A	Residue cover > 20%	N/A	periory
2. Manning's roughness coefficient, n (table 3-1)	n	0.17	0		0.00	
3. Flow length, L (total L \leq 300 ft)		103.53	0		0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0		0.00	
	Land Slope		0		0.00	
5. Land slope, s		0.017	0			0.50
$T_t = \frac{0.007 (nL)^{0.8}}{P_t^{0.5} s^{0.4}}$	T_sheet			0.58	#DIV/0!	0.58
6						
		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
7. Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved	Unpaved	
8. Flow length, L	L	1376.7	648.55		2127.79	
9. Watercourse slope, s	5	0.008375404	0.055138386		0.06	
10. Average velocity, V (figure 3-1)	V	N/A		1.48	3.79	
Unpaved $V = 16.1345S^{0.5}$						
Paved V= 20.3282S ^{0.5}						
r - L	T_shallow			0.85	0.16	1.01
$T_t = \frac{L}{3600V}$						
		Channel flow		-		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (In	iperial)
12. Cross sectional flow area, a	area	85.58	0.00	921.14	0.00	
13. Wetted perimeter, pw	p_w	59.10	0.00	193.91	0.00	
14. Hydraulic radius, r= Compute r	r			4.75	#DIV/0!	
15 Channel slope, s	s			0.007	0.007	
16 Manning's roughness coefficient in	n			0.035	0.035	
$V = \frac{\frac{2}{1.49r^3 s^2}}{n}$	V			9.76		
$V = \frac{1.477352}{7}$						
17 n						
18. Flow length, L	L	1211.83	0	3975.82	0.00	
- L	T channe			0.11	#DIV/0!	0.11
$T_t = \frac{L}{3600V}$				0.11	#DIV/0!	0.11
	-				T= (11=)	4.70
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr) Tc (mins)	1.70 101.82

	Project No:	5591
	Project Name:	Durham Creek FPM

Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_137			
				х	Y	
SubBasin_137				1277.00	359.32	
				1175.43	348.6	
		Sheet Flow	Slope AB	0.105542975		
				1175.43	348.6	
				605.42	339.46	
		Shallow Concentrated Flow	Slope BC	0.016034806	555.10	
				605.42	339.46	
				0		
		Channel flow	Slope CD	0.010174755	555.50	
				0	333.30	
				0		
		N/A	Slope DE	#DIV/0!		
		Sheet Flow	Sope DE	#51170.		
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
1. Surface description (table 3-1)	- Segment	Light underbrush	N/A	Light underbrush	N/A	
2. Manning's roughness coefficient, n (table 3-1)	n	0.4			1	
3. Flow length, L (total L \leq 300 ft)	1	101.57			0.00	
4. Two-year 24-hour rainfall, P2	P 2	62.4	0		0.00	
5. Land slope, s	Land Slope				0.00	
	T sheet	0.100		0.55		0.55
$T_t = \frac{0.007(nL)^{0.8}}{P_s^{0.5} s^{0.4}}$	1_sheet			0.55	#01070.	0.55
$P_2^{0.5}s^{0.4}$						
		Shallow Concentrated Flow				
		Shallow Concentrated Flow	1			
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	norial)
7. Surface description (paved or unpaved)	Segment	Unpaved	Unpaved	Unpaved	Unpaved	perial)
8. Flow length, L	1	570.0			0.00	
9. Watercourse slope, s		0.016034806			0.00	
10. Average velocity, V (figure 3-1)	S V	N/A	0	2.04	0.00	
Unpaved $V = 16.1345S^{0.5}$	v	N/A		2.04	0.00	
Paved V = 10.13455^{-1}						
1	T 11 11 1			0.25	//DI) //OI	0.05
$T_t = \frac{L}{3600V}$	T_shallow			0.25	#DIV/0!	0.25
11 36000						
		Channel flow	C	C	C	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
12. Crean particul flow and a				25.05	0.00	
12. Cross sectional flow area, a	area	2.40			0.00	
13. Wetted perimeter, pw	p_w	7.29	0.00	23.93	0.00	
14. Hydraulic radius, r= Compute r	r			1.08	#DIV/0!	
15 Channel slope, s	S			0.010	#DIV/0!	
16. Manning's roughness coefficient, n	n			0.035	0.035	
16. Manning's roughness coefficient, n $V = \frac{1.49r_{3,s}^2}{n}$ 17	V			4.52	#DIV/0!	
$V = \frac{17}{n}$						
17 18. Flow length, L	-	605.42	0	1986.29	0.00	
			0	1986.29	0.00	
$T_{-} - \frac{L}{-}$	T_channel			0.12	#DIV/0!	0.12
$T_t = \frac{L}{3600V}$						
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)					Tc (Hr)	0.93

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: JTF/MC Date: 12-Dec-23

Basin Model: Saugeen_HMS_Durham

	Time	of Concentration TR55 SubBa	sin_138			
				х	Y	
SubBasin_138				6096.55	382.16	
				5995.78	379.75	
		Sheet Flow	Slope AB	0.023915848		
				5995.78		
				5349.21	349.30	
		Shallow Concentrated Flow	Slope BC	0.047094669		
				5349.21		
				3814.17	332.11	
		Shallow Concentrated Flow	Slope CD	0.011198405		
				3814.17	332.11	
				0		
		Channel flow	Slope DE	0.000388027		
		Sheet Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
1. Surface description (table 3-1)		Dense grasses, including species		Dense grasses, including		
2. Manning's roughness coefficient, n (table 3-1)	n	0.24	0			
3. Flow length, L (total L \leq 300 ft)	L	100.77	0			
4. Two-year 24-hour rainfall, P2	P 2	62.4	9			
5. Land slope, s	Land Slope		0			
	T_sheet			0.66		0.66
$T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$						
6 P20 S0.4						
•		Shallow Concentrated Flow				
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	nerial)
7. Surface description (paved or unpaved)	beginener	Unpaved	Unpaved	Unpaved	Unpaved	periory
8. Flow length, L	1	646.6	1535.04	2121.29		
9. Watercourse slope, s	s	0.047094669	0.011198405	0.047	0.01	
10. Average velocity, V (figure 3-1)	v	N/A	0.011150.105	3.50		
Unpaved $V = 16.1345S^{0.5}$	· ·			5.50	1.71	
Paved V = $20.3282S^{0.5}$						
1	T shallow			0.17	0.82	0.99
$T_t = \frac{L}{3600V}$	1_shanow			0.17	0.02	0.55
		Channel flow			1 1	
	Segment I	Segment 1 (SI)	Segment 2 (SI)	Segment 1 (Imperial)	Segment 2 (Im	perial)
	beginener		Segment 2 (SI)	beginene i (impendi)	Jegnene 2 (in	periory
12. Cross sectional flow area, a	area	23.78	0.00	255.94	0.00	
13. Wetted perimeter, pw	p w	25.74	0.00	84.46		
14. Hydraulic radius, r= Compute r	r	25.74	0.00	3.03		
15 Channel slope, s	6			0.000		
16. Manning's roughness coefficient, n	n			0.000		
	v			1.76		
$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$	v			1.76	#017/01	
17 n						
18. Flow length, L	L	3814.17	0	12513.68	0.00	
-						
$T_t = \frac{L}{3600V}$	T_channel			1.98	#DIV/0!	1.98
	_					
20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)	_				Tc (Hr) Tc (mins)	3.62 217.49

							Loss Method Water	shed Parameters							
									Saturated						
						Soil Suction Head at	Soil Suction Head at	Soil Suction Head	Hydraulic			Area		Area Soil	
C hhada				De costi		the wetting front	the wetting front	at the wetting	Conductity	Field Capacity		Watershed	Area Watershed	Texture	Percentage of
Subbasin	Texture Code		HYDRO Class	-	Effective Porosity	(mm) (Low)	(mm) (Average)	front (mm) (High)	(mm/h)		Wilting Point O_w	(km2)	(ha)	(ha)	Watershed
Subbasin_101 Subbasin_101	SL	Loam Sandy Loam	A	0.463	0.434	89 110	219.5 		3 11	0.232		36.117 36.117		60.11 69.08	1.66% 1.91%
Subbasin_101			A	0.455	0.412	89	219.5	350	21	0.19		36.117	3611.7	126.54	3.50%
Subbasin_101	SIL	Loam Silt Loam	B	0.463	0.434	170	170		3	0.232		36.117		1391.18	38.52%
Subbasin_101		Sandy Loam	B	0.301	0.480	110	170		, 11	0.284	ł – – – – – – – – – – – – – – – – – – –	36.117		1391.18	0.49%
Subbasin_101		Loam	D C	0.453	0.412	89	219.5		3	0.13	0.085	36.117		292.70	8.10%
Subbasin_101	<u> </u>	Sand	C C	0.403	0.434	49	99.5		120	0.232	0.024	36.117		34.33	0.95%
Subbasin_101	SICL	Silty Clay Loam	C C	0.437	0.417	270	270		120	0.342		36.117		76.78	2.13%
Subbasin_101	CL	Clay Loam	D	0.464	0.309	210	210		1	0.31	0.187	36.117		52.96	1.47%
Subbasin 101	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		36.117		1489.60	41.24%
Subbasin_102		Loam	A	0.463	0.434	89	219.5		3	0.232		12.722		10.21	0.80%
Subbasin 102	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		12.722		8.20	0.64%
Subbasin 102		Loam	B	0.463	0.434	89	219.5	350	3	0.232	0.116	12.722		280.39	22.04%
Subbasin_102	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	12.722		637.21	50.09%
Subbasin_102	L	Loam	c	0.463	0.434	89	219.5		3	0.232		12.722		28.33	2.23%
Subbasin_102	SICL	Silty Clay Loam	c	0.471	0.432	270	270		1	0.342		12.722		0.12	0.01%
	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		12.722		307.63	24.18%
Subbasin_103	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		24.35		7.29	0.30%
Subbasin_103	L	Loam	В	0.463	0.434	89	219.5		3	0.232		24.35		244.52	10.04%
	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284		24.35		1425.16	58.53%
Subbasin_103	L	Loam	с	0.463	0.434	89	219.5		3	0.232		24.35		221.07	9.08%
Subbasin 103	SICL	Silty Clay Loam	с	0.471	0.432	270	270		1	0.342	0.21	24.35	2435	42.63	1.75%
Subbasin 103		Organic	D	0.56	0.56	180	200		0.1	0.46	0.27	24.35	2435	494.07	20.29%
Subbasin_104		Sandy Loam	A	0.453	0.412	110	180	250	11	0.19	0.085	1.18	118	0.36	0.31%
Subbasin_104	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	1.18	118	3.11	2.64%
Subbasin_104	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	1.18	118	59.72	50.61%
Subbasin_104	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	1.18	118	6.25	5.29%
Subbasin_104	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	1.18	118	48.55	41.15%
Subbasin_105	SL	Sandy Loam	A	0.453	0.412	110	180	250	11	0.19	0.085	20.996	2099.6	0.36	0.02%
Subbasin_105	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	20.996	2099.6	118.21	5.63%
Subbasin_105	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	20.996	2099.6	963.79	45.90%
Subbasin_105	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	20.996	2099.6	184.68	8.80%
Subbasin_105	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	20.996	2099.6	3.91	0.19%
Subbasin_105	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	20.996	2099.6	828.16	39.44%
Subbasin_106	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		18.315	1831.5	0.00	0.00%
Subbasin_106	L	Loam	В	0.463	0.434	89	219.5		3	0.232		18.315		139.85	7.64%
Subbasin_106	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284		18.315		1139.79	62.23%
Subbasin_106	L	Loam	С	0.463	0.434	89	219.5		3	0.232		18.315	1831.5	234.52	12.80%
Subbasin_106		Silty Clay Loam	С	0.471	0.432	270	270		1	0.342		18.315		89.31	4.88%
Subbasin_106	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		18.315		227.75	12.44%
Subbasin_107	SL	Sandy Loam	А	0.453	0.412	110	180		11	0.19		20.669		16.40	0.79%
Subbasin_107	L	Loam	В	0.463	0.434	89	219.5		3	0.232		20.669		211.98	10.26%
Subbasin_107	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	20.669		1169.14	56.56%
Subbasin_107	L	Loam	С	0.463	0.434	89	219.5		3	0.232		20.669		176.27	8.53%
Subbasin_107		, ,	С	0.471	0.432	270	270			0.342		20.669		101.24	4.90%
Subbasin_107		- 0: -	D	0.56	0.56	180	200		0.1	0.46		20.669		391.88	18.96%
Subbasin_108	SL	Sandy Loam	А	0.453	0.412	110	180		11	0.19		3.3357		2.96	
Subbasin_108	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	3.3357	333.57	21.37	6.41%

							Loss Method Water	shed Parameters							
						Soil Suction Head at the wetting front	Soil Suction Head at the wetting front	Soil Suction Head at the wetting	Saturated Hydraulic Conductity	Field Capacity		Area Watershed	Area Watershed	Area Soil Texture	Percentage of
Subbasin	Texture Code	Texture	HYDRO Class	Porosity	Effective Porosity	(mm) (Low)	(mm) (Average)	front (mm) (High)	(mm/h)	• •	Wilting Point O_w	(km2)	(ha)	(ha)	Watershed
Subbasin_108	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	3.3357	333.57	118.37	35.48%
Subbasin_108	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	3.3357	333.57	148.58	44.54%
Subbasin_108	SICL	Silty Clay Loam	C	0.471	0.432	270	270	270	1	0.342	0.21	3.3357	333.57	41.73	12.51%
Subbasin_108	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	3.3357	333.57	0.56	0.17%
Subbasin_109	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	11.359	1135.9	173.17	15.24%
Subbasin_109	S	Sand	А	0.437	0.417	49	99.5		120	0.062	0.024	11.359	1135.9	8.35	0.73%
Subbasin_109	SL	Sandy Loam	A	0.453	0.412	110	180	250	11	0.19	0.085	11.359	1135.9	158.33	13.94%
Subbasin_109	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	11.359	1135.9	83.59	7.36%
Subbasin_109	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	11.359	1135.9	177.91	15.66%
Subbasin_109	L	Loam	С	0.463	0.434	89	219.5		3	0.232	0.116	11.359		223.04	19.64%
Subbasin_109		Silty Clay Loam	С	0.471	0.432	270	270		1	0.342	0.21	11.359		1.71	0.15%
Subbasin_109	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46	0.27	11.359		309.77	27.27%
Subbasin_110	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232	0.116	9.4843		16.66	1.76%
Subbasin_110	S	Sand	A	0.437	0.417	49	99.5		120	0.062	0.024	9.4843		2.15	
Subbasin_110	SL	Sandy Loam	А	0.453	0.412	110	180		11	0.19	0.085	9.4843		2.37	0.25%
Subbasin_110	L	Loam	В	0.463	0.434	89	219.5		3	0.232	0.116	9.4843		155.47	16.39%
Subbasin_110	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	9.4843		331.15	34.92%
Subbasin_110	L	Loam	С	0.463	0.434	89	219.5		3	0.232	0.116	9.4843		228.83	24.13%
Subbasin_110		Silty Clay Loam	С	0.471	0.432	270	270		1	0.342	0.21	9.4843		39.52	4.17%
Subbasin_110	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46	0.27	9.4843		172.27	18.16%
Subbasin_111	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19	0.085	25.593		108.21	4.23%
Subbasin_111	L	Loam	В	0.463	0.434	89	219.5		3	0.232	0.116	25.593		353.14	13.80%
Subbasin_111	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	25.593	2559.3	980.37	38.31%
Subbasin_111	L	Loam	С	0.463	0.434	89	219.5		3	0.232	0.116	25.593		191.75	7.49%
Subbasin_111		, ,	С	0.471	0.432	270	270		1	0.342	0.21	25.593		56.46	2.21%
Subbasin_111	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46	0.27	25.593		868.66	33.94%
Subbasin_112	SL	Sandy Loam	А	0.453	0.412	110	180		11	0.19	0.085	6.8095		86.10	12.64%
Subbasin_112	L	Loam	В	0.463	0.434	89	219.5		3	0.232	0.116	6.8095		17.30	2.54%
Subbasin_112	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284	0.135	6.8095		239.44	35.16%
Subbasin_112	L	Loam	C	0.463	0.434	89	219.5		3	0.232		6.8095		22.12	3.25%
Subbasin_112		Silty Clay Loam	t t	0.471	0.432	270	270		1	0.342	0.21	6.8095		10.08	1.48%
Subbasin_112	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		6.8095		305.91	44.92%
Subbasin_113		Loam	A	0.463	0.434	89	219.5		3	0.232	0.116	7.99		57.69	7.22%
Subbasin_113	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		7.99		79.03	9.89%
Subbasin_113		Loam	В	0.463	0.434	89	219.5		3	0.232	0.116	7.99		222.02	27.79%
Subbasin_113	SIL	Silt Loam	B	0.501	0.486	170	170		/	0.284	0.135	7.99		202.50	25.34%
Subbasin_113		Loam	C	0.463	0.434	89	219.5		3	0.232	0.116	7.99		98.59	12.34%
Subbasin_113		Silty Clay Loam	l – – – – – – – – – – – – – – – – – – –	0.471	0.432	270	270		1	0.342	0.21	7.99		43.47	5.44%
Subbasin_113	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		7.99		95.70	
Subbasin_114		Loam	A	0.463	0.434	89	219.5		3	0.232	0.116	16.996		35.72	
Subbasin_114	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		16.996		87.93	5.17%
Subbasin_114		Loam	B	0.463	0.434	89	219.5		3	0.232	0.116	16.996		145.31	8.55%
Subbasin_114	SIL	Silt Loam	B	0.501	0.486	170	170		/	0.284	0.135	16.996		965.86	56.83%
Subbasin_114		Loam		0.463	0.434	89	219.5		3	0.232	0.116	16.996		150.69	8.87%
Subbasin_114		, ,	C	0.471	0.432	270	270		1	0.342		16.996		5.59	
Subbasin_114	ORG	- 0	D	0.56	0.56	180	200		0.1	0.46	0.27	16.996		307.91	18.12%
Subbasin_115		Loam	B	0.463	0.434	89	219.5		3	0.232	0.116	1.3733		71.67	52.19%
Subbasin_115	SIL	Silt Loam	В	0.501	0.486	170	170	170	/	0.284	0.135	1.3733	137.33	22.31	16.24%

							Loss Method Water	shed Parameters							
						Soil Suction Head at the wetting front	Soil Suction Head at the wetting front	Soil Suction Head at the wetting	Saturated Hydraulic Conductity	Field Capacity		Area Watershed	Area Watershed	Area Soil Texture	Percentage of
Subbasin	Texture Code	Texture	HYDRO Class	Porosity	Effective Porosity	(mm) (Low)	(mm) (Average)	front (mm) (High)	(mm/h)		Wilting Point O_w	(km2)	(ha)	(ha)	Watershed
Subbasin_115	L	Loam	C	0.463	0.434	89	219.5		3	0.232		1.3733		10.70	7.79%
Subbasin_115		Silty Clay Loam	1 1	0.471	0.432	270	270		1	0.342		1.3733		13.43	9.78%
Subbasin_115	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		1.3733		19.22	
Subbasin_116	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232		1.2656		70.43	
Subbasin_116	SIL	Silt Loam	В	0.501	0.486 0.434	170	170 219.5		/	0.284		1.2656		3.88	3.06% 14.33%
Subbasin_116	SICL	Loam Silty Clay Loam	C C	0.463	0.434	89 270	219.5		3	0.232	0.116	1.2656 1.2656		18.14 34.12	
Subbasin_116				0.471	0.432		219.5	350	1	0.342		9.505		417.96	
Subbasin_117		Loam	A	0.463	0.434	89 89	219.5		3	0.232		9.505		142.86	
Subbasin_117 Subbasin_117	SIL	Loam Silt Loam	D	0.465	0.434	170			<u> </u>	0.232	0.116	9.505		91.88	
Subbasin_117		Loam		0.301	0.488	89	219.5		7	0.284		9.505		44.14	4.64%
Subbasin_117	SICL	Silty Clay Loam	C C	0.403	0.434	270	219.3			0.232		9.505		67.14	7.06%
Subbasin_117		Organic		0.471	0.432	180	270		0.1	0.342		9.505		186.30	19.60%
Subbasin_117		Loam	D A	0.30	0.36	89	219.5	350	0.1	0.40		9.2346		336.35	36.42%
Subbasin_118		Loam		0.403	0.434	89	219.5		3	0.232		9.2340		184.11	19.94%
Subbasin_118	SIL	Silt Loam	B	0.403	0.434	170	170			0.232		9.2340		193.81	20.99%
Subbasin_118	1	Loam	C	0.463	0.434	89	219.5		7	0.232		9.2346		55.77	
Subbasin_118	SICL	Silty Clay Loam	c c	0.403	0.434	270	215.5			0.342		9.2346		102.39	11.09%
Subbasin_118		Organic		0.56	0.56	180	200		0.1	0.46		9.2346		51.03	
Subbasin_119		Loam	Δ	0.463	0.434	89	219.5		3	0.232		4.4575		341.29	
Subbasin 119	1	Loam	B	0.463	0.434	89	219.5		3	0.232		4.4575		45.55	
Subbasin 119	SICL	Silty Clay Loam	C	0.471	0.432	270	270		1	0.342		4.4575		34.02	7.63%
Subbasin_119		Organic	D	0.56	0.56	180	200		0.1	0.46		4.4575		24.81	5.57%
Subbasin_120	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232		3.2915		225.59	
Subbasin_120	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232		3.2915		4.83	
Subbasin_120	L	Loam	c	0.463	0.434	89	219.5		3	0.232		3.2915		5.80	
Subbasin 120	SICL	Silty Clay Loam	c	0.471	0.432	270	270		1	0.342		3.2915		0.94	0.28%
Subbasin_120	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		3.2915		91.85	
Subbasin_121	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232		14.987		766.79	
Subbasin 121	SL	Sandy Loam	A	0.453		110	180		11			14.987		11.85	
Subbasin 121	L	Loam	В	0.463	0.434	89	219.5		3	0.232		14.987		341.55	22.79%
Subbasin 121	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284		14.987		102.35	6.83%
Subbasin 121	L	Loam	с	0.463	0.434	89	219.5		3	0.232		14.987	1498.7	103.30	6.89%
Subbasin_121	SICL	Silty Clay Loam	с	0.471	0.432	270	270		1	0.342		14.987		67.46	
Subbasin_121		Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	14.987	1498.7	105.13	7.01%
Subbasin_122	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232	0.116	4.2171	421.71	282.47	66.98%
Subbasin_122	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	4.2171	421.71	47.19	11.19%
Subbasin_122	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	4.2171	421.71	9.16	2.17%
Subbasin_122	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	4.2171	421.71	13.06	3.10%
Subbasin_122	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	4.2171	421.71	58.26	13.81%
Subbasin_122	_	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	4.2171	421.71	11.56	2.74%
Subbasin_123	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	9.5452	954.52	738.06	77.32%
Subbasin_123	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	9.5452	954.52	19.73	2.07%
Subbasin_123	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	9.5452	954.52	0.31	0.03%
Subbasin_123	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	9.5452	954.52	28.50	2.99%
Subbasin_123	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	9.5452	954.52	152.23	15.95%
Subbasin_123	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	9.5452	954.52	15.70	1.65%
Subbasin_124	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232	0.116	5.4237	542.37	454.99	83.89%

							Loss Method Water	shed Parameters							
						Soil Suction Head at the wetting front	Soil Suction Head at the wetting front	Soil Suction Head at the wetting	Saturated Hydraulic Conductity	Field Capacity		Area Watershed	Area Watershed	Area Soil Texture	Percentage of
Subbasin	Texture Code		HYDRO Class	Porosity	Effective Porosity	(mm) (Low)	(mm) (Average)	front (mm) (High)	(mm/h)		Wilting Point O_w	(km2)	(ha)	(ha)	Watershed
Subbasin_124	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284		5.4237		15.18	2.80%
Subbasin_124	L	Loam	C	0.463	0.434	89	219.5	350	3	0.232		5.4237	542.37	21.62	3.99%
Subbasin_124		Silty Clay Loam	C	0.471	0.432	270	270		1	0.342		5.4237	542.37	1.91	0.35%
Subbasin_124	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		5.4237	542.37	48.60	8.96%
Subbasin_125		Loam	A	0.463	0.434	89	219.5		3	0.232		9.0317		603.41	66.81%
Subbasin_125	SIL	Silt Loam	В	0.501	0.486	170	170		/	0.284	0.135	9.0317	903.17	144.16	15.96%
Subbasin_125		Loam	C	0.463	0.434	89	219.5		3	0.232		9.0317	903.17	7.79	0.86%
Subbasin_125		Silty Clay Loam		0.471	0.432	270	270		1	0.342		9.0317		108.71	12.04%
Subbasin_125	ORG	Organic	D	0.56	0.56 0.434	180	200	220 350	0.1	0.46		9.0317		39.08	4.33% 22.26%
Subbasin_126		Loam	A	0.463	0.434	89 89	219.5 219.5	350	3	0.232		7.7236		171.95 127.80	16.55%
Subbasin_126 Subbasin_126	SIL	Loam Silt Loam	D	0.465	0.434	170	170			0.232		7.7236		276.94	35.86%
Subbasin_126			D C	0.301	0.488	89	219.5	350	/	0.284		7.7236	772.36	74.42	9.64%
Subbasin_126	SICL	Loam Silty Clay Loam	C C	0.403	0.434	270	219.3			0.232		7.7236		13.65	9.64% 1.77%
Subbasin_126		Organic		0.471	0.432	180	270		0.1	0.342		7.7236		107.45	13.91%
Subbasin_120		Loam	Δ	0.30	0.36	89	219.5	350	0.1	0.40		11.403		436.44	38.27%
Subbasin_127	SL	Sandy Loam	A A	0.403	0.434	110	180		11	0.232		11.403		22.15	1.94%
Subbasin_127		Loam	B	0.453	0.412	89	219.5	350	3	0.13		11.403		122.98	10.78%
Subbasin_127	SIL	Silt Loam	B	0.403	0.434	170	170		7	0.232		11.403		313.17	27.46%
Subbasin_127		Loam	C	0.463	0.434	89	219.5		, 3	0.232		11.403		19.59	1.72%
Subbasin_127	SICL	Silty Clay Loam	c C	0.403	0.432	270	213.5			0.232		11.403		2.55	0.22%
Subbasin_127		Organic		0.56	0.56	180	200		0.1	0.46		11.403		223.12	19.57%
Subbasin_128		Loam	A	0.463	0.434	89	219.5	350	3	0.232		1.8478	184.78	130.03	70.37%
Subbasin_128		Loam	В	0.463	0.434	89	219.5	350	3	0.232		1.8478		10.60	5.74%
Subbasin_128	SICL	Silty Clay Loam	c	0.471	0.432	270	270		1	0.342		1.8478		44.14	23.89%
Subbasin 128		Organic	D	0.56	0.56	180	200		0.1	0.46		1.8478	184.78	0.00	0.00%
Subbasin_129	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232		24.814	2481.4	1995.01	80.40%
Subbasin_129	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232		24.814		108.42	4.37%
	L	Loam	с	0.463	0.434	89	219.5	350	3	0.232		24.814		139.06	5.60%
Subbasin 129	SICL	Silty Clay Loam	с	0.471		270	270		1	0.342		24.814		88.74	3.58%
Subbasin 129	ORG	Organic	D	0.56	0.56	180	200		0.1	0.46		24.814		149.04	6.01%
Subbasin 130	L	Loam	A	0.463	0.434	89	219.5		3	0.232	0.116	5.4488	544.88	390.66	71.70%
Subbasin_130	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	5.4488	544.88	86.98	15.96%
Subbasin_130	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	5.4488	544.88	67.24	12.34%
Subbasin_131	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232	0.116	3.1071	310.71	139.91	45.03%
Subbasin_131	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	3.1071	310.71	91.72	29.52%
Subbasin_131	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	3.1071	310.71	1.66	0.54%
Subbasin_131	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	3.1071	310.71	5.64	1.82%
Subbasin_131	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	3.1071	310.71	71.64	23.06%
Subbasin_132	L	Loam	A	0.463	0.434	89	219.5	350	3	0.232	0.116	2.1852	218.52	46.21	21.15%
Subbasin_132	SL	Sandy Loam	A	0.453	0.412	110	180		11	0.19		2.1852		27.08	12.39%
Subbasin_132	L	Loam	В	0.463	0.434	89	219.5	350	3	0.232	0.116	2.1852	218.52	70.72	32.36%
Subbasin_132	SIL	Silt Loam	В	0.501	0.486	170	170		7	0.284		2.1852		21.32	9.76%
Subbasin_132	L	Loam	С	0.463	0.434	89	219.5		3	0.232		2.1852		0.94	0.43%
Subbasin_132		Silty Clay Loam	С	0.471	0.432	270	270		1	0.342		2.1852		38.46	17.60%
Subbasin_132	ORG	Organic	D	0.56		180	200		0.1	0.46		2.1852		13.75	6.29%
Subbasin_133	L	Loam	А	0.463		89	219.5		3	0.232		2.5688		161.19	
Subbasin_133	SL	Sandy Loam	А	0.453	0.412	110	180	250	11	0.19	0.085	2.5688	256.88	16.73	6.51%

							Loss Method Water	shed Parameters							
						Soil Suction Head at the wetting front	Soil Suction Head at the wetting front	Soil Suction Head at the wetting	Saturated Hydraulic Conductity	Field Capacity		Area Watershed	Area Watershed	Area Soil Texture	Percentage of
Subbasin	Texture Code	Texture	HYDRO Class	Porosity	Effective Porosity	(mm) (Low)	(mm) (Average)	front (mm) (High)	(mm/h)		Wilting Point O_w	(km2)	(ha)	(ha)	Watershed
Subbasin_133	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	2.5688	256.88		8.96%
Subbasin_133	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	2.5688	256.88	39.65	15.43%
Subbasin_133	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	2.5688	256.88	16.08	6.26%
Subbasin_134	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	0.2685	26.85	26.77	99.71%
Subbasin_135	SL	Sandy Loam	A	0.453	0.412	110	180	250	11	0.19	0.085	0.3158	31.58	31.51	99.78%
Subbasin_136	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	1.7062	170.62	5.38	3.16%
Subbasin_136	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	1.7062	170.62	135.26	79.28%
Subbasin_136	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	1.7062	170.62	29.97	17.56%
Subbasin_137	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	0.282	28.2	0.11	0.38%
Subbasin_137	SL	Sandy Loam	А	0.453	0.412	110	180	250	11	0.19	0.085	0.282	28.2	27.97	99.18%
Subbasin_137	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	0.282	28.2	0.02	0.09%
Subbasin_138	L	Loam	А	0.463	0.434	89	219.5	350	3	0.232	0.116	4.8845	488.45	174.07	35.64%
Subbasin_138	SL	Sandy Loam	А	0.453	0.412	110	180	250	11	0.19	0.085	4.8845	488.45	28.37	5.81%
Subbasin_138	SIL	Silt Loam	В	0.501	0.486	170	170	170	7	0.284	0.135	4.8845	488.45	195.56	40.04%
Subbasin_138	L	Loam	С	0.463	0.434	89	219.5	350	3	0.232	0.116	4.8845	488.45	29.86	6.11%
Subbasin_138	SICL	Silty Clay Loam	С	0.471	0.432	270	270	270	1	0.342	0.21	4.8845	488.45	57.07	11.68%
Subbasin_138	ORG	Organic	D	0.56	0.56	180	200	220	0.1	0.46	0.27	4.8845	488.45	3.19	0.65%

			Fercent impervi			on Basin Param	eters				
				Canopy Storage	Depression Storage	Total Abstraction	Area Watershed	Area Watershed	Area Soil	Impervious	Percentage of
Subbasin ID	0	Land Cover	Percent Impervious	(mm)	(mm)	(mm)	(km2)	(ha)			Watershed
Subbasin_101 Subbasin_101	2	Forest Agriculture	0	-		10	36.117 36.117	3611.7 3611.7	30.26 1843.58	0.00	0.84%
Subbasin_101		Wetland	0			18	36.117	3611.7	1670.72	0.00	46.26%
Subbasin_101		Open Water	100					3611.7	2.47	2.47	0.07%
Subbasin_101	5	Transportation	100	1		2	36.117	3611.7	61.70	61.70	1.71%
Subbasin_102		Forest	0			10	12.722	1272.2	23.24	0.00	1.83%
Subbasin_102		Agriculture	0			7		1272.2	773.32	0.00	60.79%
Subbasin_102 Subbasin_102		Wetland Open Water	0	3		18	12.722 12.722	1272.2 1272.2	445.91 1.84	0.00	35.05% 0.14%
Subbasin_102		Transportation	100	1		2		1272.2	25.91	25.91	2.04%
Subbasin_103	-	Forest	0	-		10	24.35	2435	66.80	0.00	2.74%
Subbasin_103	2	Agriculture	0	1	. 6	7	24.35	2435	1667.91	0.00	68.50%
Subbasin_103		Wetland	0	-		18	24.35	2435	648.75	0.00	26.64%
Subbasin_103		Open Water	100					2435	2.16	2.16	0.09%
Subbasin_103 Subbasin_104		Transportation Forest	100	1		2	24.35 1.18	2435 118	48.60	48.60 0.00	2.00%
Subbasin_104	2		0	1		7	1.18	118	67.03	0.00	56.80%
Subbasin 104	-	Wetland	0			18	1.18	118	45.88	0.00	38.88%
Subbasin_104	4	Open Water	100	C	0	0	1.18	118	1.55	1.55	1.32%
Subbasin_104		Transportation	100	1		2		118	0.24	0.24	0.20%
Subbasin_105		Forest	0	-		10		2099.6	30.47	0.00	1.45%
Subbasin_105 Subbasin_105		Agriculture Wetland	0	1		7	20.996 20.996	2099.6 2099.6	1287.12 722.18	0.00	61.30% 34.40%
Subbasin_105		Open Water	100					2099.6	3.75	3.75	34.40% 0.18%
Subbasin_105		Transportation	100	1		2		2099.6	50.91	50.91	2.42%
Subbasin_105		Built -Up Area – Impervious	45	1		2		2099.6	3.71	1.67	0.18%
Subbasin_106	1	Forest	0				18.315	1831.5	45.32	0.00	2.47%
Subbasin_106		Agriculture	0			7	18.315	1831.5	1440.96	0.00	78.68%
Subbasin_106		Wetland	0	-		18	18.315	1831.5	297.60	0.00	16.25%
Subbasin_106 Subbasin_106		Open Water Transportation	100 100	0 1		0		1831.5	8.99 37.18	8.99 37.18	0.49%
Subbasin_106		Built -Up Area – Impervious	45	1		2		1831.5 1831.5	0.65	0.29	2.03%
Subbasin 107		Forest					20.669	2066.9	86.51	0.00	4.19%
	2	Agriculture	0	1	. 6	7	20.669	2066.9	1274.41	0.00	61.66%
Subbasin_107	-	Wetland	0	-		18	20.669	2066.9	653.40	0.00	31.61%
Subbasin_107		Open Water	100	C				2066.9	18.61	18.61	0.90%
Subbasin_107 Subbasin_108		Transportation Forest	100	1		2	20.669 3.3357	2066.9 333.57	32.27	32.27 0.00	1.56% 0.09%
Subbasin_108		Agriculture	0			10	3.3357	333.57	298.60	0.00	89.52%
Subbasin 108		Wetland	0			18	3.3357	333.57	28.97	0.00	8.68%
	4	Open Water	100	C				333.57	0.02	0.02	0.00%
Subbasin_108	-	Transportation	100	1		2		333.57	5.68	5.68	1.70%
Subbasin_109		Forest	0	-		10	11.359	1135.9	20.75	0.00	1.83%
Subbasin_109		Agriculture Wetland	0			7	11.359 11.359	1135.9	545.89 511.39	0.00	48.06% 45.02%
Subbasin_109 Subbasin_109		Open Water	100					1135.9 1135.9	17.38	17.38	45.02%
Subbasin_109		Transportation	100			2		1135.9	20.41		1.80%
Subbasin_109		Built -Up Area – Pervious	10	1	4	5		1135.9	18.53	1.85	1.63%
Subbasin_110		Forest	0	-				948.43	17.73	0.00	1.87%
Subbasin_110		Agriculture	0					948.43	611.46	0.00	64.47%
Subbasin_110		Wetland	0			18	9.4843	948.43	287.65	0.00	30.33%
Subbasin_110 Subbasin_110		Open Water Transportation	100 100			0		948.43 948.43	14.91 16.07	14.91 16.07	1.57% 1.69%
Subbasin_111		Forest	0					2559.3	66.67	0.00	2.60%
Subbasin 111		Agriculture	0					2559.3	1492.83	0.00	58.33%
Subbasin_111	3	Wetland	0	3	15	18	25.593	2559.3	945.06	0.00	36.93%
Subbasin_111		Open Water	100	C				2559.3	7.74	7.74	0.30%
Subbasin_111		Transportation	100					2559.3	37.13	37.13	1.45%
Subbasin_111		Built -Up Area – Impervious Extraction – Aggregate	45			2		2559.3 2559.3	1.53 6.13	0.69	0.06%
Subbasin_111 Subbasin_112		Forest	0					680.95	10.97	0.00	1.61%
Subbasin 112		Agriculture	0					680.95	347.09	0.00	50.97%
Subbasin_112		Wetland	0			18	6.8095	680.95	303.82	0.00	44.62%
Subbasin_112		Open Water	100					680.95	11.27	11.27	1.65%
Subbasin_112		Transportation	100			2		680.95	7.81	7.81	1.15%
Subbasin_113 Subbasin_113		Forest	0	-				799	28.52	0.00	3.57%
Subbasin_113 Subbasin_113		Agriculture Wetland	0			18		799 799	551.58 192.17	0.00	69.03% 24.05%
Subbasin_113		Open Water	100					799	6.00	6.00	0.75%
Subbasin_113		Transportation	100					799	20.71	20.71	2.59%
Subbasin_114		Forest	0					1699.6	55.00	0.00	3.24%
Subbasin_114		Agriculture	0				16.996	1699.6	1116.39	0.00	65.69%
Subbasin_114		Wetland Open Water	0	-		18	16.996 16.996	1699.6 1699.6	489.28	0.00	28.79% 0.06%
Subbasin 114											

	1		Percent Impervio	bus and init	ai Abstractio	on Basin Param	eters				
Cubles is ID		1		Canopy Storage	Storage	Total Abstraction	Area Watershed	Area Watershed	Area Soil	Impervious	Percentage of Watershed
Subbasin ID Subbasin 114		Land Cover Built - Up Area – Impervious	Percent Impervious 45	(mm) 1	(mm) 1	(mm) 2	(km2) 16.996	(ha) 1699.6	Texture (ha) 0.54	Area (ha) 0.24	0.03%
Subbasin 115		Forest					1.3733	137.33	3.05	0.00	2.22%
Subbasin 115		Agriculture	0		6	7	1.3733	137.33	101.94	0.00	74.23%
	3	Wetland	0	3	15	18	1.3733	137.33	27.82	0.00	20.26%
Subbasin_115	4	Open Water	100	0				137.33	1.72	1.72	1.25%
Subbasin_115		Transportation	100	1		2		137.33	2.79	2.79	2.03%
Subbasin_116		Forest	0		5	10	1.2656	126.56	5.74	0.00	4.53%
Subbasin_116		Agriculture	0		6 15	7	1.2656	126.56	81.62	0.00	64.49%
Subbasin_116 Subbasin_116		Wetland Open Water	100	3			1.2656 1.2656	126.56 126.56	34.88	0.00	27.56%
Subbasin_116		Transportation	100	1		-		120.50	3.04	3.04	2.40%
Subbasin 117		Forest	0			10	9.505	950.5	128.15	0.00	13.48%
Subbasin_117	2	Agriculture	0	1	6	7	9.505	950.5	511.52	0.00	53.82%
Subbasin_117		Wetland	0	-		18	9.505	950.5	285.42	0.00	30.03%
Subbasin_117		Open Water	100	0				950.5	1.37	1.37	0.14%
Subbasin_117		Transportation	100	1	1	2		950.5	22.07	22.07	2.32%
Subbasin_117		Built -Up Area – Impervious	45	1	1	2	9.505	950.5	1.20	0.54	0.13%
Subbasin_118 Subbasin_118		Forest Agriculture	0	-	5	10	9.2346 9.2346	923.46 923.46	135.49 635.37	0.00	14.67% 68.80%
Subbasin_118		Wetland	0		15	18	9.2346	923.46	118.91	0.00	12.88%
Subbasin_118		Open Water	100	0				923.46	15.54	15.54	1.68%
Subbasin_118	5	•	100	1	1	2		923.46	16.22	16.22	1.76%
Subbasin_118		Built -Up Area – Impervious	45	1	1	2		923.46	1.80	0.81	0.19%
Subbasin_119		Forest	0	-		10	4.4575	445.75	29.13	0.00	6.54%
Subbasin_119		Agriculture	0		6	7		445.75	259.92	0.00	58.31%
Subbasin_119		Wetland	0	-	15	18	4.4575	445.75	73.78	0.00	16.55%
Subbasin_119 Subbasin_119		Open Water Transportation	100 100	0	0	0		445.75 445.75	5.73 23.43	5.73 23.43	1.28% 5.26%
Subbasin_119 Subbasin_119		Built - Up Area – Pervious	100		4	5		445.75	23.43	23.43	5.16%
Subbasin 119		Built - Up Area – Impervious	45	1		2		445.75	30.28	13.62	6.79%
Subbasin_120		Forest	0			10	3.2915	329.15	34.02	0.00	10.34%
Subbasin_120	2	Agriculture	0	1	6	7	3.2915	329.15	163.23	0.00	49.59%
Subbasin_120		Wetland	0	-		18	3.2915	329.15	125.11	0.00	38.01%
Subbasin_120		Open Water	100	0				329.15	2.18	2.18	0.66%
Subbasin_120		Transportation	100	1	1	2		329.15	3.19	3.19	0.97%
Subbasin_120 Subbasin_121		Built -Up Area – Impervious Forest	45	1	1	2	3.2915 14.987	329.15 1498.7	0.72	0.32	0.22%
Subbasin_121 Subbasin_121		Agriculture	0		6	7		1498.7	980.06	0.00	65.39%
Subbasin_121		Wetland	0			18	14.987	1498.7	359.65	0.00	24.00%
Subbasin 121		Open Water	100	0				1498.7	5.50	5.50	0.37%
Subbasin_121	5	Transportation	100	1	1	2	14.987	1498.7	28.07	28.07	1.87%
Subbasin_122	1	Forest	0	-		10	4.2171	421.71	57.20	0.00	13.56%
Subbasin_122		Agriculture	0			7		421.71	250.13	0.00	59.31%
Subbasin_122		Wetland	0	-		18	4.2171	421.71	99.73	0.00	23.65%
Subbasin_122	4		100	0		0		421.71	8.12	8.12	1.93%
Subbasin_122 Subbasin_123		Transportation Forest	100	1		10		421.71 954.52	6.53 412.12	6.53 0.00	1.55% 43.18%
Subbasin_123		Agriculture	0		6	-		954.52	289.92	0.00	30.37%
Subbasin 123		Wetland	0			18	9.5452	954.52	204.29	0.00	21.40%
Subbasin_123	4	Open Water	100					954.52	27.39	27.39	2.87%
Subbasin_123	5	Transportation	100				9.5452	954.52	20.81	20.81	2.18%
Subbasin_124		Forest	0					542.37	145.51	0.00	26.83%
Subbasin_124		Agriculture	0					542.37	207.50	0.00	38.26%
Subbasin_124		Wetland Open Water	0	-		18	5.4237	542.37	173.53	0.00	31.99%
Subbasin_124 Subbasin_124		Open Water Transportation	100 100	0		0		542.37 542.37	3.94 10.34	3.94 10.34	0.73%
Subbasin_124 Subbasin_125		Forest	100					903.17	10.34	0.00	1.91%
Subbasin_125		Agriculture	0					903.17	510.54	0.00	56.53%
Subbasin_125		Wetland	0			18	9.0317	903.17	214.80	0.00	23.78%
Subbasin_125		Open Water	100	0				903.17	9.07	9.07	1.00%
Subbasin_125		Transportation	100					903.17	19.17	19.17	2.12%
Subbasin_126		Forest	0					772.36	70.39	0.00	9.11%
Subbasin_126		Agriculture	0					772.36	467.73	0.00	60.56%
Subbasin_126		Wetland Open Water	0			18	7.7236	772.36	220.92	0.00	28.60%
Subbasin_126 Subbasin_126		Open Water Transportation	100 100					772.36 772.36	2.29	2.29 9.41	0.30%
Subbasin_126 Subbasin_127		Forest	0					1140.3	9.41	0.00	1.22%
Subbasin_127 Subbasin_127		Agriculture	0					1140.3	685.51	0.00	60.12%
Subbasin_127		Wetland	0			18	11.403	1140.3	264.93	0.00	23.23%
		Open Water	100					1140.3	1.25	1.25	0.11%
Subbasin_127						-	44.402	4440.2	17.33	47.00	1 5 20/
Subbasin_127		Transportation	100					1140.3		17.33	1.52%
Subbasin_127 Subbasin_128	1	Forest	0	5	5	10	1.8478	184.78	41.54	0.00	22.48%
Subbasin_127	1			5	5	10 7	1.8478 1.8478				

		-	Percent Impervi	ous and Ini	tial Abstractic	on Basin Param	eters	-			
Subbasin ID	gridcode	Land Cover	Percent Impervious	Canopy Storage (mm)	Depression Storage (mm)	Total Abstraction (mm)	Area Watershed (km2)	Area Watershed (ha)	Area Soil Texture (ha)	Impervious Area (ha)	Percentage of Watershed
Subbasin_128	5	Transportation	100		1	2	1.8478	184.78	3.88	3.88	2.10%
Subbasin_129	1		0			10	24.814	2481.4	439.54	0.00	17.71%
Subbasin_129	2	0	0			7	24.814	2481.4	1538.66	0.00	62.01%
Subbasin_129	3		0	-		18	24.814	2481.4	416.17	0.00	16.77%
Subbasin_129	4		100			0		2481.4	14.98	14.98	0.60%
Subbasin_129	5	1	100			2	24.814	2481.4	53.10	53.10	2.14%
Subbasin_129		Extraction – Aggregate	0	-		5	24.814	2481.4	15.67	0.00	0.63%
Subbasin_130	1		0		-	10	5.4488	544.88	94.83	0.00	17.40%
Subbasin_130	2	0	0			7	5.4488	544.88	294.48	0.00	54.05%
Subbasin_130	3		0	-		18 0	5.4488	544.88	133.51	0.00	24.50%
Subbasin_130	4		100			2		544.88 544.88	0.02	0.02	0.00%
Subbasin_130 Subbasin_130	-		100			5	5.4488	544.88	9.46	0.00	1.74%
Subbasin_130 Subbasin_131	8	Extraction – Aggregate Forest	0			10	3.1071	310.71	72.72	0.00	23.40%
Subbasin_131	2		0	-		7	3.1071	310.71	136.58	0.00	43.96%
Subbasin_131	3	0	0			18	3.1071	310.71	91.05	0.00	29.30%
Subbasin_131	4		100			0		310.71	1.31	1.31	0.42%
Subbasin 131	5		100	-	-	2	3.1071	310.71	8.70	8.70	2.80%
Subbasin 132	1		0			10	2.1852	218.52	52.49	0.00	24.02%
Subbasin 132	2		0			7	2.1852	218.52	128.94	0.00	59.00%
Subbasin 132	3	0	0			18	2.1852	218.52	25.78	0.00	11.80%
Subbasin 132	4		100			0		218.52	5.55	5.55	2.54%
Subbasin 132	5		100			2	2.1852	218.52	5.33	5.33	2.44%
Subbasin 133	1		0			10	2.5688	256.88	47.57	0.00	18.52%
Subbasin 133	2		0			7	2.5688	256.88	119.27	0.00	46.43%
Subbasin 133	3	Wetland	0	3	15	18	2.5688	256.88	50.50	0.00	19.66%
Subbasin_133	4	Open Water	100	0	0	0	2.5688	256.88	2.46	2.46	0.96%
Subbasin_133	5	Transportation	100	1	1	2	2.5688	256.88	8.08	8.08	3.15%
Subbasin_133	6	Built -Up Area – Pervious	10	1	4	5	2.5688	256.88	9.76	0.98	3.80%
Subbasin_133	7	Built -Up Area – Impervious	45	1	1	2	2.5688	256.88	10.07	4.53	3.92%
Subbasin_133	8	Extraction – Aggregate	0			5	2.5688	256.88	7.85	0.00	3.06%
Subbasin_134	1		0	-		10	0.2685	26.85	2.11	0.00	7.86%
Subbasin_134	2	0	0		-	7	0.2685	26.85	0.07	0.00	0.26%
Subbasin_134		Wetland	0			18	0.2685	26.85	3.82	0.00	14.22%
Subbasin_134	5		100			2	0.2685	26.85	4.41	4.41	16.42%
Subbasin_134		Built -Up Area – Pervious	10			5	0.2685	26.85	2.89	0.29	10.76%
Subbasin_134		Built -Up Area – Impervious	45			2		26.85	13.36	6.01	49.77%
Subbasin_135		Forest	0	-		10	0.3158	31.58	2.21	0.00	7.00%
Subbasin_135	2	0	0		-	7	0.3158	31.58	4.89	0.00	15.49%
Subbasin_135	1	Transportation	100			2	0.3158	31.58	3.15	3.15	9.98%
Subbasin_135	7	the second secon	45			2	0.3158	31.58	20.38	9.17	64.54%
Subbasin_135 Subbasin_136		Extraction – Aggregate	0	-	-	5	0.3158	31.58	0.71 20.49	0.00	2.26% 12.01%
Subbasin_136 Subbasin_136		Forest Agriculture	0			10	1.7062	170.62 170.62	65.23	0.00	38.23%
Subbasin_136 Subbasin_136	2	-	0			18	1.7062	170.62	12.15	0.00	38.23%
Subbasin_136	4		100	0		18		170.62	3.89	3.89	2.28%
Subbasin_136		Transportation	100			2		170.62	15.09	15.09	8.85%
Subbasin_136		Built -Up Area – Pervious	100					170.62	11.16	1.12	6.54%
Subbasin_136		Built - Up Area – Impervious	45			2		170.62	42.40	1.12	24.85%
Subbasin_130 Subbasin_137		Forest	43			10	0.282	28.2	0.25	0.00	0.88%
Subbasin 137		Agriculture	0			7	0.282	28.2	0.23	0.00	3.08%
Subbasin_137		Transportation	100			2	0.282	28.2	7.09	7.09	25.15%
Subbasin 137		Built -Up Area – Impervious	45			2	0.282	28.2	19.68	8.86	69.80%
Subbasin 138		Forest	0			10		488.45	83.65	0.00	17.13%
Subbasin_138	2		0			7	4.8845	488.45	226.02	0.00	46.27%
Subbasin 138		Wetland	0			18	4.8845	488.45	69.77	0.00	14.28%
Subbasin_138		Open Water	100			0		488.45	7.57	7.57	1.55%
Subbasin_138		Transportation	100			2	4.8845	488.45	23.19	23.19	4.75%
		Built -Up Area – Pervious	10		4	5		488.45	13.79	1.38	2.82%
		Built -Up Area – Impervious	45			2		488.45	62.73	28.23	12.84%

Appendix B3

Model Results

Hydrologic Peak Flow Results - Existing Conditions

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

asin Model:	Saugeen_HMS_	Calibrated			Areal Reduction Facto	or:	Hazel	0.766
				Pea	Results		Durham	1.0
	Hazel ABS		ugeen-0.766					
		Durham=1, ARF Sa		Values				am=1, ARF Saugeen=1
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)	Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak
Subbasin_129	24.8	37.1	17 October 1954, 03:15	168.38	Subbasin_129	24.8	15.4	1 January 2100, 09:00
Subbasin_130	5.4	10.8	17 October 1954, 01:40	198.08	Subbasin_130	5.4	4.6	1 January 2100, 07:05
Junction_116	30.3	47.5	17 October 1954, 02:45	173.73	Junction_116	30.3	19.8	1 January 2100, 08:25
Subbasin_101	36.1	10.6	17 October 1954, 23:00	62.35	Subbasin_101	36.1	4.4	2 January 2100, 04:55
Subbasin_102	12.7	18.9	17 October 1954, 02:30	156.41	Subbasin_102	12.7	8.2	1 January 2100, 08:00
Junction_101	48.8	25.3	17 October 1954, 03:50	86.85	Junction_101	48.8	10.7	1 January 2100, 09:20
Reach_1001	48.8	25.2	17 October 1954, 05:00	86.17	Reach_1001	48.8	10.7	1 January 2100, 10:35
Subbasin_103	24.4	28.4	17 October 1954, 03:35	131.80	Subbasin_103	24.4	12.6	1 January 2100, 09:10
Subbasin_104	1.2	2.7	17 October 1954, 01:00	219.76	Subbasin_104	1.2	1.2	1 January 2100, 06:20
Junction_102	74.4	55.5	17 October 1954, 04:10	103.23	Junction_102	74.4	24.1	1 January 2100, 09:35
Reach_1002	74.4	55.4	17 October 1954, 07:35	100.50	Reach_1002	74.4	24.1	1 January 2100, 12:20
Subbasin_105	21.0	33.0	17 October 1954, 02:35	168.17	Subbasin_105	21.0	14.0	1 January 2100, 08:10
Subbasin_106	18.3	17.1	17 October 1954, 05:00	114.09	Subbasin_106	18.3	7.7	1 January 2100, 10:35
Junction_103	39.3	49.5	17 October 1954, 03:10	142.98	Junction_103	39.3	21.5	1 January 2100, 08:50
Reach_1003	39.3	49.4	17 October 1954, 03:50	141.82	Reach_1003	39.3	21.5	1 January 2100, 09:35
Subbasin_107	20.7	27.3	17 October 1954, 02:55	143.11	Subbasin_107	20.7	12.0	1 January 2100, 08:25
Subbasin_108	3.3	10.3	17 October 1954, 00:05	270.26	Subbasin_108	3.3	5.2	1 January 2100, 05:05
Junction_104	137.7	131.0	17 October 1954, 04:40	122.80	Junction_104	137.7	58.0	1 January 2100, 10:30
Reach_1004	137.7	127.1	17 October 1954, 10:25	117.18	Reach_1004	137.7	55.9	1 January 2100, 15:55
Subbasin_109	11.4	10.8	17 October 1954, 04:55	116.45	Subbasin_109	11.4	4.7	1 January 2100, 10:30
Subbasin_110	9.5	13.4	17 October 1954, 02:55	154.66	Subbasin_110	9.5	5.8	1 January 2100, 08:30
Junction_105	158.5	146.0	17 October 1954, 09:55	119.37	Junction_105	158.5	64.1	1 January 2100, 15:35
Reach_1005	158.5	119.5	17 October 1954, 18:15	109.54	Reach_1005	158.5	52.7	1 January 2100, 24:00
Subbasin_111	25.6	17.1	17 October 1954, 09:20	100.47	Subbasin_111	25.6	7.0	1 January 2100, 15:10
Subbasin_112	6.8	4.8	17 October 1954, 08:25	103.04	Subbasin_112	6.8	2.0	1 January 2100, 14:20
Junction_106	190.9	138.6	17 October 1954, 17:45	108.09	Junction_106	190.9	60.6	1 January 2100, 23:40
Reach_1006	190.9	138.3	17 October 1954, 18:30	106.65	Reach_1006	190.9	60.4	2 January 2100, 00:40
Subbasin_113	8.0	12.3	17 October 1954, 02:20	160.52	Subbasin_113	8.0	5.4	1 January 2100, 07:50
Junction_107	198.9	142.5	17 October 1954, 18:30	108.81	Junction_107	198.9	62.2	2 January 2100, 00:40
Reach_1007	198.9	142.0	17 October 1954, 18:55	108.23	Reach_1007	198.9	61.5	2 January 2100, 01:25
Subbasin_114	17.0	18.5	17 October 1954, 03:45	122.99	Subbasin_114	17.0	8.3	1 January 2100, 09:15
Subbasin_115	1.4	4.4	17 October 1954, 00:20	285.25	Subbasin_115	1.4	2.1	1 January 2100, 05:25
Junction_108	217.3	151.1	17 October 1954, 18:15	110.50	Junction_108	217.3	65.3	2 January 2100, 01:00
Reach_1008	217.3	151.1	17 October 1954, 18:20	110.36	Reach_1008	217.3	65.3	2 January 2100, 01:10
Subbasin_116	1.3	5.2	16 October 1954, 23:50	355.19	Subbasin_116	1.3	2.7	1 January 2100, 04:50
Junction_109	218.6	152.7	17 October 1954, 18:20	111.78	Junction_109	218.6	66.1	2 January 2100, 01:05
Reach_1009	218.6	152.6	17 October 1954, 19:45	109.76	Reach_1009	218.6	66.0	2 January 2100, 02:50
Subbasin_117	9.5	13.1	17 October 1954, 03:50	160.85	Subbasin_117	9.5	5.4	1 January 2100, 09:35
Subbasin_118	9.2	28.1	17 October 1954, 00:20	274.14	Subbasin_118	9.2	13.4	1 January 2100, 05:30

Junction_110	237.3	166.9	17 October 1954, 19:15	118.20
Reach_1010	237.3	166.9	17 October 1954, 19:30	117.76
Subbasin_119	4.5	19.6	16 October 1954, 23:40	383.41
Subbasin_120	3.3	13.1	16 October 1954, 24:00	348.28
Junction_111	245.0	176.8	17 October 1954, 19:25	125.68
Reach_1011	245.0	176.8	17 October 1954, 19:55	124.70
Subbasin_121	15.0	21.9	17 October 1954, 03:10	163.02
Subbasin_122	4.2	12.8	17 October 1954, 00:25	277.94
Junction_112	264.2	188.4	17 October 1954, 19:50	129.31
Reach_1012	264.2	188.4	17 October 1954, 20:50	127.07
Subbasin_123	9.5	32.1	17 October 1954, 00:15	303.51
Subbasin_124	5.4	12.8	17 October 1954, 01:05	227.50
Junction_113	279.2	202.3	17 October 1954, 20:40	135.05
Reach_1013	279.2	202.3	17 October 1954, 21:15	134.24
Subbasin_125	9.0	25.6	17 October 1954, 00:30	259.35
Subbasin_126	7.7	18.2	17 October 1954, 00:45	218.94
Junction_114	296.0	216.0	17 October 1954, 20:35	140.27
Reach_1014	296.0	216.0	17 October 1954, 21:05	139.22
Subbasin 127	11.4	19.0	17 October 1954, 02:15	173.26
Subbasin_128	1.8	8.8	16 October 1954, 23:30	404.61
Junction_115	309.2	224.9	17 October 1954, 20:55	142.06
Reach_1015	309.2	224.8	17 October 1954, 21:35	141.28
Subbasin_132	2.2	10.8	16 October 1954, 23:15	408.21
Saugeen Flow Gauge	311.4	228.0	17 October 1954, 21:30	143.16
Reach_1016	30.3	47.5	17 October 1954, 03:55	172.59
Subbasin_131	3.1	17.0	16 October 1954, 23:15	116.15
Junction_117	344.8	273.0	17 October 1954, 04:25	145.50
Reach_1017	344.8	272.9	17 October 1954, 04:35	145.21
Subbasin_133	2.6	10.0	16 October 1954, 23:45	332.75
Junction_118	347.3	276.4	17 October 1954, 04:35	146.59
Reach_1018	347.3	276.4	17 October 1954, 04:50	146.21
Subbasin_136	1.7	7.6	16 October 1954, 23:20	107.63
Subbasin_134	0.3	2.3	17 October 1954, 00:05	206.89
Junction_119	0.3	2.3	17 October 1954, 00:05	200.07
Reach_1019	0.3	2.3	17 October 1954, 00:15	200.07
Subbasin_135	0.3	3.2	16 October 1954, 22:35	153.49
Junction_120	0.6	4.6	16 October 1954, 22:33	177.96
Reach_1020	0.6	4.6	16 October 1954, 23:10	177.97
Subbasin_137	0.8	3.2	16 October 1954, 22:25	191.88
OutflowDurham	0.3	7.4	16 October 1954, 22:25	191.88
	349.9	277.7		
Junction_121			17 October 1954, 04:45	146.11
Reach_1021 Subbasin_138	349.9 4.9	275.2	17 October 1954, 05:45	143.89
				400.74

lunction 110	037.3	144.9	17 October 1954, 19:15	119.00		lunction 110	037.5	70.0	2 100 100 02:25	33.91
Junction_110	237.3	166.9	17 October 1954, 19:15	118.20		Junction_110	237.3	72.2	2 January 2100, 02:35	33.81
Reach_1010	237.3	166.9	17 October 1954, 19:30	117.76		Reach_1010	237.3	72.2	2 January 2100, 02:55	33.51
Subbasin_119	4.5	19.6	16 October 1954, 23:40	383.41		Subbasin_119	4.5	11.0	1 January 2100, 04:40	141.07
Subbasin_120	3.3	13.1	16 October 1954, 24:00	348.28		Subbasin_120	3.3	6.4	1 January 2100, 05:05	115.00
Junction_111	245.0	176.8	17 October 1954, 19:25	125.68		Junction_111	245.0	77.4	2 January 2100, 02:50	36.56
Reach_1011	245.0	176.8	17 October 1954, 19:55	124.70		Reach_1011	245.0	77.4	2 January 2100, 03:30	35.87
Subbasin_121	15.0	21.9	17 October 1954, 03:10	163.02		Subbasin_121	15.0	9.0	1 January 2100, 08:55	49.50
Subbasin_122	4.2	12.8	17 October 1954, 00:25	277.94		Subbasin_122	4.2	5.8	1 January 2100, 05:40	87.47
Junction_112	264.2	188.4	17 October 1954, 19:50	129.31		Junction_112	264.2	82.2	2 January 2100, 03:30	37.46
Reach_1012	264.2	188.4	17 October 1954, 20:50	127.07		Reach_1012	264.2	82.2	2 January 2100, 05:05	35.92
Subbasin_123	9.5	32.1	17 October 1954, 00:15	303.51		Subbasin_123	9.5	15.1	1 January 2100, 05:25	97.45
Subbasin_124	5.4	12.8	17 October 1954, 01:05	227.50		Subbasin_124	5.4	5.4	1 January 2100, 06:30	68.33
Junction_113	279.2	202.3	17 October 1954, 20:40	135.05		Junction_113	279.2	88.4	2 January 2100, 05:00	38.66
Reach_1013	279.2	202.3	17 October 1954, 21:15	134.24		Reach_1013	279.2	88.4	2 January 2100, 05:30	38.08
Subbasin_125	9.0	25.6	17 October 1954, 00:30	259.35	1	Subbasin_125	9.0	11.7	1 January 2100, 05:45	81.91
Subbasin_126	7.7	18.2	17 October 1954, 00:45	218.94		Subbasin_126	7.7	8.1	1 January 2100, 06:05	69.15
Junction_114	296.0	216.0	17 October 1954, 20:35	140.27		Junction_114	296.0	94.4	2 January 2100, 05:25	40.23
Reach_1014	296.0	216.0	17 October 1954, 21:05	139.22		Reach_1014	296.0	94.4	2 January 2100, 06:10	39.51
Subbasin_127	11.4	19.0	17 October 1954, 02:15	173.26		Subbasin_127	11.4	8.1	1 January 2100, 07:45	53.97
Subbasin_128	1.8	8.8	16 October 1954, 23:30	404.61		Subbasin_128	1.8	5.0	1 January 2100, 04:30	151.46
Junction_115	309.2	224.9	17 October 1954, 20:55	142.06		Junction_115	309.2	98.4	2 January 2100, 06:05	40.71
Reach_1015	309.2	224.8	17 October 1954, 21:35	141.28		Reach_1015	309.2	98.4	2 January 2100, 06:50	40.25
Subbasin_132	2.2	10.8	16 October 1954, 23:15	408.21		Subbasin_132	2.2	6.8	1 January 2100, 04:05	166.65
augeen Flow Gauge	311.4	228.0	17 October 1954, 21:30	143.16		Saugeen Flow Gauge	311.4	100.3	2 January 2100, 06:50	41.14
Reach_1016	30.3	47.5	17 October 1954, 03:55	172.59		Reach_1016	30.3	19.8	1 January 2100, 09:35	52.41
Subbasin_131	3.1	17.0	16 October 1954, 23:15	116.15		Subbasin_131	3.1	10.4	1 January 2100, 04:15	45.75
Junction_117	344.8	273.0	17 October 1954, 04:25	145.50		Junction_117	344.8	112.4	1 January 2100, 09:50	42.17
Reach_1017	344.8	272.9	17 October 1954, 04:35	145.21		Reach_1017	344.8	112.4	1 January 2100, 10:00	41.97
Subbasin_133	2.6	10.0	16 October 1954, 23:45	332.75		Subbasin_133	2.6	5.3	1 January 2100, 04:40	118.55
Junction_118	347.3	276.4	17 October 1954, 04:35	146.59		Junction_118	347.3	114.2	1 January 2100, 10:00	42.53
Reach_1018	347.3	276.4	17 October 1954, 04:50	146.21		Reach 1018	347.3	114.2	1 January 2100, 10:15	42.27
Subbasin_136	1.7	7.6	16 October 1954, 23:20	107.63		Subbasin 136	1.7	5.2	1 January 2100, 04:15	48.41
Subbasin_134	0.3	2.3	17 October 1954, 00:05	206.89		Subbasin_134	0.3	1.4	1 January 2100, 05:05	61.15
Junction_119	0.3	2.3	17 October 1954, 00:05	206.89		Junction_119	0.3	1.4	1 January 2100, 05:05	61.15
Reach_1019	0.3	2.3	17 October 1954, 00:15	206.74		Reach_1019	0.3	1.4	1 January 2100, 05:20	60.96
Subbasin_135	0.3	3.2	16 October 1954, 22:35	153.49		Subbasin_135	0.3	3.0	1 January 2100, 03:45	52.00
Junction_120	0.6	4.6	16 October 1954, 23:10	177.96		Junction_120	0.6	3.4	1 January 2100, 03:50	56.12
Reach_1020	0.6	4.6	16 October 1954, 23:20	177.97		Reach_1020	0.6	3.4	1 January 2100, 04:00	56.14
Subbasin_137	0.3	3.2	16 October 1954, 22:25	191.88		Subbasin_137	0.3	3.4	1 January 2100, 03:40	62.65
OutflowDurham	0.9	7.4	16 October 1954, 22:45	182.50		OutflowDurham	0.9	6.3	1 January 2100, 03:50	58.26
Junction_121	349.9	277.7	17 October 1954, 04:45	146.11		Junction_121	349.9	114.9	1 January 2100, 10:15	42.34
	349.9	275.2	17 October 1954, 05:45	143.89		Reach_1021	349.9	111.6	1 January 2100, 12:10	40.77
Reach_1021					1 1					

Basin Model:

Saugeen_HMS_Calibrated

2% AEP 6 Hour SCS Type 2

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

Pea	k Flow Res	ults		
			4%	AEP 6 H
nm)		Hydrologic Element	Drainage Area	Peak D

Areal Reduction Factor:

Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)
Subbasin_129	24.8	13.2	1 January 2100, 09:00	43.98
Subbasin_130	5.4	3.9	1 January 2100, 07:05	51.64
Junction_116	30.3	16.9	1 January 2100, 08:25	45.35
Subbasin_101	36.1	3.7	2 January 2100, 04:55	13.93
Subbasin_102	12.7	6.9	1 January 2100, 08:00	41.75
Junction_101	48.8	9.1	1 January 2100, 09:20	21.18
Reach_1001	48.8	9.0	1 January 2100, 10:30	20.87
Subbasin_103	24.4	10.6	1 January 2100, 09:10	36.60
Subbasin_104	1.2	1.0	1 January 2100, 06:20	58.54
Junction_102	74.4	20.4	1 January 2100, 09:35	26.62
Reach_1002	74.4	20.3	1 January 2100, 12:25	25.16
Subbasin_105	21.0	12.0	1 January 2100, 08:10	44.58
Subbasin_106	18.3	6.6	1 January 2100, 10:35	33.06
Junction_103	39.3	18.3	1 January 2100, 08:50	39.21
Reach_1003	39.3	18.3	1 January 2100, 09:40	38.57
Subbasin_107	20.7	10.2	1 January 2100, 08:25	39.15
Subbasin_108	3.3	4.4	1 January 2100, 05:05	79.20
Junction_104	137.7	49.0	1 January 2100, 10:35	32.40
Reach_1004	137.7	47.2	1 January 2100, 16:15	29.34
Subbasin_109	11.4	3.9	1 January 2100, 10:30	31.53
Subbasin_110	9.5	4.9	1 January 2100, 08:30	41.48
Junction_105	158.5	54.0	1 January 2100, 15:55	30.23
Reach_1005	158.5	44.0	2 January 2100, 01:05	25.86
Subbasin_111	25.6	5.9	1 January 2100, 15:10	26.67
Subbasin_112	6.8	1.7	1 January 2100, 14:20	27.43
Junction_106	190.9	50.5	2 January 2100, 00:45	26.03
Reach_1006	190.9	50.3	2 January 2100, 01:45	25.19
Subbasin_113	8.0	4.6	1 January 2100, 07:50	43.67
Junction_107	198.9	51.8	2 January 2100, 01:45	25.94
Reach_1007	198.9	51.3	2 January 2100, 02:30	25.61
Subbasin_114	17.0	7.0	1 January 2100, 09:15	34.76
Subbasin_115	1.4	1.8	1 January 2100, 05:25	79.15
Junction_108	217.3	54.3	2 January 2100, 02:30	26.67
Reach_1008	217.3	54.3	2 January 2100, 02:35	26.58
Subbasin_116	1.3	2.3	1 January 2100, 04:45	103.47
Junction_109	218.6	55.0	2 January 2100, 02:35	27.03
Reach_1009	218.6	54.9	2 January 2100, 04:15	25.85
Subbasin_117	9.5	4.6	1 January 2100, 09:35	41.52
Subbasin_118	9.2	11.5	1 January 2100, 05:25	77.29

	4%	AEP 6 Hour SCS Ty	rpe 2	
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)
Subbasin_129	24.8	10.8	1 January 2100, 09:00	36.21
Subbasin_130	5.4	3.2	1 January 2100, 07:05	42.12
Junction_116	30.3	13.9	1 January 2100, 08:25	37.27
Subbasin_101	36.1	3.0	2 January 2100, 04:55	11.18
Subbasin_102	12.7	5.6	1 January 2100, 08:00	33.69
Junction_101	48.8	7.3	1 January 2100, 09:20	17.04
Reach_1001	48.8	7.3	1 January 2100, 10:30	16.81
Subbasin_103	24.4	8.6	1 January 2100, 09:10	29.54
Subbasin_104	1.2	0.8	1 January 2100, 06:20	47.53
Junction_102	74.4	16.5	1 January 2100, 09:35	21.47
Reach_1002	74.4	16.4	1 January 2100, 12:35	20.29
Subbasin_105	21.0	9.8	1 January 2100, 08:10	36.36
Subbasin_106	18.3	5.3	1 January 2100, 10:35	26.78
Junction_103	39.3	14.9	1 January 2100, 08:50	31.90
Reach_1003	39.3	14.9	1 January 2100, 09:40	31.36
Subbasin_107	20.7	8.2	1 January 2100, 08:25	31.53
Subbasin_108	3.3	3.6	1 January 2100, 05:05	64.70
Junction_104	137.7	39.6	1 January 2100, 10:40	26.21
Reach_1004	137.7	38.0	1 January 2100, 16:45	23.70
Subbasin_109	11.4	3.1	1 January 2100, 10:30	25.16
Subbasin_110	9.5	4.0	1 January 2100, 08:30	33.76
Junction_105	158.5	43.4	1 January 2100, 16:20	24.41
Reach_1005	158.5	34.4	2 January 2100, 02:15	20.58
Subbasin_111	25.6	4.8	1 January 2100, 15:10	21.56
Subbasin_112	6.8	1.4	1 January 2100, 14:20	22.13
Junction_106	190.9	39.4	2 January 2100, 01:50	20.77
Reach_1006	190.9	39.3	2 January 2100, 03:00	20.09
Subbasin_113	8.0	3.7	1 January 2100, 07:50	35.42
Junction_107	198.9	40.5	2 January 2100, 02:55	20.70
Reach_1007	198.9	40.2	2 January 2100, 03:40	20.43
Subbasin_114	17.0	5.6	1 January 2100, 09:15	27.70
Subbasin_115	1.4	1.4	1 January 2100, 05:25	65.14
Junction_108	217.3	42.5	2 January 2100, 03:40	21.29
Reach_1008	217.3	42.5	2 January 2100, 03:45	21.21
Subbasin_116	1.3	1.9	1 January 2100, 04:45	85.13
Junction_109	218.6	43.1	2 January 2100, 03:45	21.58
Reach_1009	218.6	43.0	2 January 2100, 05:30	20.58
Subbasin_117	9.5	3.8	1 January 2100, 09:35	34.08
Subbasin_118	9.2	9.5	1 January 2100, 05:25	63.60

Junction_110	237.3	60.0	2 January 2100, 04:10	28.48	Junction_110	23
Reach_1010	237.3	60.0	2 January 2100, 04:30	28.21	Reach_1010	23
Subbasin_119	4.5	9.5	1 January 2100, 04:35	122.01	Subbasin_119	4
Subbasin_120	3.3	5.5	1 January 2100, 05:00	97.97	Subbasin_120	3
Junction_111	245.0	64.4	2 January 2100, 04:25	30.86	Junction_111	24
Reach_1011	245.0	64.4	2 January 2100, 05:05	30.25	Reach_1011	24
Subbasin_121	15.0	7.7	1 January 2100, 08:55	42.21	Subbasin_121	15
Subbasin_122	4.2	5.0	1 January 2100, 05:40	74.77	Subbasin_122	4
Junction_112	264.2	68.5	2 January 2100, 05:00	31.63	Junction_112	26
Reach_1012	264.2	68.5	2 January 2100, 06:40	30.28	Reach_1012	26
Subbasin_123	9.5	13.0	1 January 2100, 05:25	83.54	Subbasin_123	9
Subbasin_124	5.4	4.6	1 January 2100, 06:30	58.09	Subbasin_124	5
Junction_113	279.2	73.7	2 January 2100, 06:30	32.64	Junction_113	27
Reach_1013	279.2	73.7	2 January 2100, 07:00	32.13	Reach_1013	27
Subbasin_125	9.0	9.9	1 January 2100, 05:45	69.73	Subbasin_125	9
Subbasin_126	7.7	6.9	1 January 2100, 06:05	58.47	Subbasin_126	7
Junction_114	296.0	78.7	2 January 2100, 06:55	33.97	Junction_114	29
Reach_1014	296.0	78.7	2 January 2100, 07:40	33.33	Reach_1014	29
Subbasin_127	11.4	6.9	1 January 2100, 07:45	45.85	Subbasin_127	1
Subbasin_128	1.8	4.3	1 January 2100, 04:25	130.20	Subbasin_128	1
Junction_115	309.2	82.1	2 January 2100, 07:35	34.37	Junction_115	30
Reach_1015	309.2	82.1	2 January 2100, 08:15	33.99	 Reach_1015	30
Subbasin_132	2.2	5.8	1 January 2100, 04:05	143.01	Subbasin_132	2
Saugeen Flow Gauge	311.4	83.7	2 January 2100, 08:15	34.75	Saugeen Flow Gauge	31
Reach_1016	30.3	16.9	1 January 2100, 09:30	44.80	Reach_1016	3(
Subbasin_131	3.1	9.0	1 January 2100, 04:10	39.02	Subbasin_131	3
Junction_117	344.8	95.5	1 January 2100, 09:55	35.67	Junction_117	34
Reach_1017	344.8	95.5	1 January 2100, 10:10	35.49		34
Subbasin_133	2.6	4.5	1 January 2100, 04:40	101.33	Subbasin 133	2
Junction_118	347.3	97.0	1 January 2100, 10:10	35.98	Junction_118	34
Reach_1018	347.3	97.0	1 January 2100, 10:20	35.74	Reach_1018	34
Subbasin_136	1.7	4.6	1 January 2100, 04:15	42.36	Subbasin_136	1
Subbasin_134	0.3	1.3	1 January 2100, 05:05	54.41	Subbasin_134	c
Junction_119	0.3	1.3	1 January 2100, 05:05	54.41	Junction_119	c
Reach_1019	0.3	1.2	1 January 2100, 05:20	54.25	Reach_1019	c
	0.3	2.6		46.22		c
Subbasin_135			1 January 2100, 03:45 1 January 2100, 03:50	49.91	Subbasin_135	
Junction_120	0.6	3.0			Junction_120	c
Reach_1020	0.6	3.0	1 January 2100, 04:00	49.93	Reach_1020	C
Subbasin_137	0.3	3.0	1 January 2100, 03:40	56.28	Subbasin_137	C
OutflowDurham	0.9	5.6	1 January 2100, 03:50	52.00	OutflowDurham	C
Junction_121	349.9	97.6	1 January 2100, 10:20	35.82	Junction_121	34
Reach_1021	349.9	94.7	1 January 2100, 12:20	34.44	Reach_1021	34
Subbasin_138	4.9	13.6	1 January 2100, 05:35	148.32	Subbasin_138	4

Junction_110	237.3	47.2	2 January 2100, 05:25	22.79
Reach_1010	237.3	47.2	2 January 2100, 05:45	22.56
Subbasin_119	4.5	8.0	1 January 2100, 04:35	102.10
Subbasin_120	3.3	4.5	1 January 2100, 05:00	80.03
Junction_111	245.0	50.8	2 January 2100, 05:40	24.78
Reach_1011	245.0	50.8	2 January 2100, 06:30	24.26
Subbasin_121	15.0	6.3	1 January 2100, 08:55	34.50
Subbasin_122	4.2	4.1	1 January 2100, 05:40	61.42
Junction_112	264.2	54.1	2 January 2100, 06:25	25.43
Reach_1012	264.2	54.1	2 January 2100, 08:10	24.29
Subbasin_123	9.5	10.7	1 January 2100, 05:25	68.84
Subbasin_124	5.4	3.8	1 January 2100, 06:30	47.26
Junction_113	279.2	58.3	2 January 2100, 08:05	26.26
Reach_1013	279.2	58.3	2 January 2100, 08:40	25.81
Subbasin_125	9.0	8.1	1 January 2100, 05:45	56.95
Subbasin_126	7.7	5.6	1 January 2100, 06:05	47.27
Junction_114	296.0	62.3	2 January 2100, 08:30	27.32
Reach_1014	296.0	62.3	2 January 2100, 09:20	26.79
Subbasin_127	11.4	5.6	1 January 2100, 07:45	37.32
Subbasin_128	1.8	3.6	1 January 2100, 04:25	108.27
Junction_115	309.2	65.1	2 January 2100, 09:15	27.67
Reach_1015	309.2	65.0	2 January 2100, 09:55	27.35
Subbasin_132	2.2	4.8	1 January 2100, 04:05	117.96
augeen Flow Gauge	311.4	66.4	2 January 2100, 09:55	27.99
Reach_1016	30.3	13.9	1 January 2100, 09:30	36.81
Subbasin_131	3.1	7.4	1 January 2100, 04:10	32.08
Junction_117	344.8	77.8	1 January 2100, 10:05	28.80
Reach_1017	344.8	77.7	1 January 2100, 10:20	28.65
Subbasin_133	2.6	3.7	1 January 2100, 04:40	83.30
Junction_118	347.3	79.0	1 January 2100, 10:20	29.05
Reach_1018	347.3	79.0	1 January 2100, 10:35	28.85
Subbasin_136	1.7	3.8	1 January 2100, 04:15	35.79
Subbasin_134	0.3	1.1	1 January 2100, 05:05	47.26
Junction_119	0.3	1.1	1 January 2100, 05:05	47.26
Reach_1019	0.3	1.1	1 January 2100, 05:20	47.11
Subbasin_135	0.3	2.3	1 January 2100, 03:45	39.95
Junction_120	0.6	2.6	1 January 2100, 03:50	43.24
Reach_1020	0.6	2.6	1 January 2100, 04:00	43.26
Subbasin_137	0.3	2.7	1 January 2100, 03:40	49.42
OutflowDurham	0.9	4.8	1 January 2100, 03:50	45.27
Junction_121	349.9	79.5	1 January 2100, 03:30	28.92
Reach_1021	347.7	77.1	1 January 2100, 10:30	27.76
	4.9	11.2		
Subbasin_138	4.9 354.8	80.9	1 January 2100, 05:40	122.75

Volume (mm)

27.10

30.92

27.79

7.84

23.83

12.00

11.85

20.87

34.58

15.16

14.33

26.69

19.13

23.17

22.76

22.15

46.86

18.70

17.01

17.35

24.48

17.48

14.78

15.55

15.88

14.93

14.36

25.28

14.80

14.60

19.32

48.69

15.19

15.13

63.34

15.41

14.64

25.29

47.54

Peak Flow Results

Basin Model:

Hydrologic Element

Subbasin_129

Subbasin 130

Junction_116

Subbasin_101

Subbasin 102

Junction_101

Reach_1001

Subbasin 103

Subbasin_104

Junction_102

Reach 1002

Subbasin_105

Subbasin_106

Junction_103

Reach_1003

Subbasin_107

Subbasin 108

Junction_104 Reach_1004

Subbasin 109

Subbasin_110

Junction_105

Reach_1005

Subbasin_111 Subbasin_112

Junction_106

Reach 1006

Subbasin_113

Junction_107

Reach 1007

Subbasin_114 Subbasin_115

Junction_108

Reach_1008

Subbasin_116

Junction_109

Reach_1009

Subbasin_117

Subbasin 118

Saugeen_HMS_Calibrated

Drainaae Area

24.8

5.4

30.3

36.1

12.7

48.8

48.8

24.4

1.2

74.4

74.4

21.0

18.3

39.3

39.3

20.7

3.3

137.7

137.7

11.4

9.5

158.5

158.5

25.6

6.8

190.9

190.9

8.0

198.9

198.9

17.0

1.4

217.3

217.3

1.3

218.6

218.6

9.5

9.2

10% AEP 6 Hour SCS Type 2

Peak Discharae

8.1

2.3

10.4

2.1

3.9

5.1

5.1

6.1

0.6

11.6

11.6

7.2

3.8

10.8

10.8

5.7

2.6

28.2

27.0

2.2

2.9

30.6

24.5

3.5

1.0

28.0

27.7

2.7

28.6

28.4

3.9

1.1

30.1

30.1

1.4

30.5

30.5

2.8

7.1

Time of Peak

1 January 2100, 09:00

1 January 2100, 07:10

1 January 2100, 08:25

2 January 2100, 05:00

1 January 2100, 08:00

1 January 2100, 09:20

1 January 2100, 10:25

1 January 2100, 09:10

1 January 2100, 06:20

1 January 2100, 09:30

1 January 2100, 12:45

1 January 2100, 08:10

1 January 2100, 10:40

1 January 2100, 08:50

1 January 2100, 09:45

1 January 2100, 08:25

1 January 2100, 05:05

1 January 2100, 11:10

1 January 2100, 17:25

1 January 2100, 10:35

1 January 2100, 08:30

1 January 2100, 17:05

2 January 2100, 03:15

1 January 2100, 15:10

1 January 2100, 14:20

2 January 2100, 02:45

2 January 2100, 04:45

1 January 2100, 07:50

2 January 2100, 04:40

2 January 2100, 05:15

1 January 2100, 09:15

1 January 2100, 05:25

2 January 2100, 05:10

2 January 2100, 05:20

1 January 2100, 04:45

2 January 2100, 05:20

2 January 2100, 07:00

1 January 2100, 09:35

1 January 2100, 05:30

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC

Areal Reduction Factor:

Date: 12-Dec-23

20% AEP 6 Hour SCS Type 2								
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm				
Subbasin_129	24.8	5.8	1 January 2100, 09:00	19.22				
Subbasin_130	5.4	1.6	1 January 2100, 07:10	21.04				
Junction_116	30.3	7.3	1 January 2100, 08:30	19.55				
Subbasin_101	36.1	1.3	2 January 2100, 05:00	4.99				
Subbasin_102	12.7	2.6	1 January 2100, 08:00	15.71				
Junction_101	48.8	3.4	1 January 2100, 09:20	7.78				
Reach_1001	48.8	3.4	1 January 2100, 10:05	7.69				
Subbasin_103	24.4	4.1	1 January 2100, 09:10	14.10				
Subbasin_104	1.2	0.4	1 January 2100, 06:20	23.19				
Junction_102	74.4	7.8	1 January 2100, 09:20	10.03				
Reach_1002	74.4	7.8	1 January 2100, 12:55	9.48				
Subbasin_105	21.0	4.9	1 January 2100, 08:15	18.16				
Subbasin_106	18.3	2.7	1 January 2100, 10:40	13.32				
Junction_103	39.3	7.4	1 January 2100, 08:50	15.91				
Reach_1003	39.3	7.4	1 January 2100, 09:55	15.63				
Subbasin_107	20.7	3.9	1 January 2100, 08:30	14.85				
Subbasin_108	3.3	1.8	1 January 2100, 05:10	32.67				
Junction_104	137.7	19.0	1 January 2100, 11:15	12.60				
Reach_1004	137.7	18.0	1 January 2100, 18:25	11.58				
Subbasin_109	11.4	1.4	1 January 2100, 10:35	11.39				
Subbasin_110	9.5	2.0	1 January 2100, 08:35	16.51				
Junction_105	158.5	20.3	1 January 2100, 18:05	11.86				
Reach_1005	158.5	16.7	2 January 2100, 04:35	10.14				
Subbasin_111	25.6	2.3	1 January 2100, 15:10	10.21				
Subbasin_112	6.8	0.6	1 January 2100, 14:20	10.34				
Junction_106	190.9	18.9	2 January 2100, 04:00	10.15				
Reach_1006	190.9	18.8	2 January 2100, 05:25	9.75				
Subbasin_113	8.0	1.8	1 January 2100, 07:50	17.38				
Junction_107	198.9	19.4	2 January 2100, 05:20	10.06				
Reach_1007	198.9	19.3	2 January 2100, 05:55	9.91				
Subbasin_114	17.0	2.6	1 January 2100, 09:15	12.96				
Subbasin_115	1.4	0.8	1 January 2100, 05:30	34.34				
Junction_108	217.3	20.4	2 January 2100, 05:50	10.31				
Reach_1008	217.3	20.4	2 January 2100, 06:00	10.26				
Subbasin_116	1.3	1.0	1 January 2100, 04:45	44.82				
Junction_109	218.6	20.7	2 January 2100, 06:00	10.46				
Reach_1009	218.6	20.7	2 January 2100, 07:55	9.90				
Subbasin_117	9.5	2.0	1 January 2100, 09:35	17.83				
Subbasin_118	9.2	5.0	1 January 2100, 05:30	33.29				

3

			1	
Junction_110	237.3	33.5	2 January 2100, 06:50	16.34
Reach_1010	237.3	33.5	2 January 2100, 07:15	16.16
Subbasin_119	4.5	6.1	1 January 2100, 04:35	78.57
Subbasin_120	3.3	3.3	1 January 2100, 05:00	59.48
Junction_111	245.0	36.2	2 January 2100, 07:10	17.88
Reach_1011	245.0	36.2	2 January 2100, 08:05	17.49
Subbasin_121	15.0	4.6	1 January 2100, 08:55	25.45
Subbasin_122	4.2	3.1	1 January 2100, 05:40	45.74
Junction_112	264.2	38.6	2 January 2100, 07:55	18.39
Reach_1012	264.2	38.6	2 January 2100, 09:55	17.52
Subbasin_123	9.5	8.0	1 January 2100, 05:25	51.55
Subbasin_124	5.4	2.7	1 January 2100, 06:30	34.53
Junction_113	279.2	41.7	2 January 2100, 09:45	19.01
Reach_1013	279.2	41.7	2 January 2100, 10:25	18.66
Subbasin_125	9.0	6.0	1 January 2100, 05:45	41.91
Subbasin_126	7.7	4.0	1 January 2100, 06:05	33.63
Junction_114	296.0	44.6	2 January 2100, 10:15	19.76
Reach_1014	296.0	44.6	2 January 2100, 11:10	19.36
Subbasin_127	11.4	4.1	1 January 2100, 07:45	27.24
Subbasin_128	1.8	2.7	1 January 2100, 04:25	82.11
Junction_115	309.2	46.6	2 January 2100, 11:05	20.03
Reach_1015	309.2	46.6	2 January 2100, 11:35	19.79
Subbasin_132	2.2	3.6	1 January 2100, 04:05	87.76
Saugeen Flow Gauge	311.4	47.5	2 January 2100, 11:35	20.27
Reach_1016	30.3	10.4	1 January 2100, 09:25	27.44
Subbasin_131	3.1	5.6	1 January 2100, 04:10	24.05
Junction_117	344.8	57.0	1 January 2100, 10:20	20.93
Reach_1017	344.8	57.0	1 January 2100, 10:35	20.82
Subbasin_133	2.6	2.7	1 January 2100, 04:40	61.26
Junction_118	347.3	57.9	1 January 2100, 10:35	21.12
Reach_1018	347.3	57.9	1 January 2100, 10:50	20.95
Subbasin_136	1.7	3.0	1 January 2100, 04:15	28.26
Subbasin_134	0.3	0.9	1 January 2100, 05:05	38.72
Junction_119	0.3	0.9	1 January 2100, 05:05	38.72
Reach_1019	0.3	0.9	1 January 2100, 05:20	38.60
Subbasin_135	0.3	1.8	1 January 2100, 03:45	32.26
Junction_120	0.6	2.1	1 January 2100, 03:50	35.17
Reach_1020	0.6	2.0	1 January 2100, 04:05	35.19
Subbasin_137	0.3	2.2	1 January 2100, 03:40	41.01
OutflowDurham	0.9	3.9	1 January 2100, 03:50	37.09
Junction_121	349.9	58.2	1 January 2100, 10:45	21.03
Reach_1021	349.9	56.8	1 January 2100, 12:45	20.14
Subbasin_138	4.9	8.4	1 January 2100, 05:40	92.26
Sink-1	354.8	59.7	1 January 2100, 12:40	21.13

, , I	007.0	0.0 -				007.0			
Junction_110	237.3	33.5	2 January 2100, 06:50	16.34	Junction_110	237.3	22.8	2 January 2100, 07:45	11.13
Reach_1010	237.3	33.5	2 January 2100, 07:15	16.16	Reach_1010	237.3	22.8	2 January 2100, 08:15	10.99
Subbasin_119	4.5	6.1	1 January 2100, 04:35	78.57	Subbasin_119	4.5	4.6	1 January 2100, 04:40	58.24
Subbasin_120	3.3	3.3	1 January 2100, 05:00	59.48	Subbasin_120	3.3	2.3	1 January 2100, 05:00	41.89
Junction_111	245.0	36.2	2 January 2100, 07:10	17.88	Junction_111	245.0	24.8	2 January 2100, 08:05	12.27
Reach_1011	245.0	36.2	2 January 2100, 08:05	17.49	Reach_1011	245.0	24.8	2 January 2100, 09:05	11.98
Subbasin_121	15.0	4.6	1 January 2100, 08:55	25.45	Subbasin_121	15.0	3.2	1 January 2100, 08:55	17.51
Subbasin_122	4.2	3.1	1 January 2100, 05:40	45.74	Subbasin_122	4.2	2.1	1 January 2100, 05:40	32.15
Junction_112	264.2	38.6	2 January 2100, 07:55	18.39	Junction_112	264.2	26.4	2 January 2100, 08:55	12.62
Reach_1012	264.2	38.6	2 January 2100, 09:55	17.52	Reach_1012	264.2	26.4	2 January 2100, 11:05	11.99
Subbasin_123	9.5	8.0	1 January 2100, 05:25	51.55	Subbasin_123	9.5	5.7	1 January 2100, 05:25	36.61
Subbasin_124	5.4	2.7	1 January 2100, 06:30	34.53	Subbasin_124	5.4	1.9	1 January 2100, 06:35	23.44
Junction_113	279.2	41.7	2 January 2100, 09:45	19.01	Junction_113	279.2	28.6	2 January 2100, 10:55	13.05
Reach_1013	279.2	41.7	2 January 2100, 10:25	18.66	Reach_1013	279.2	28.6	2 January 2100, 11:35	12.79
Subbasin_125	9.0	6.0	1 January 2100, 05:45	41.91	Subbasin_125	9.0	4.1	1 January 2100, 05:45	28.64
Subbasin_126	7.7	4.0	1 January 2100, 06:05	33.63	Subbasin_126	7.7	2.6	1 January 2100, 06:05	22.37
Junction_114	296.0	44.6	2 January 2100, 10:15	19.76	Junction_114	296.0	30.5	2 January 2100, 11:30	13.52
Reach_1014	296.0	44.6	2 January 2100, 11:10	19.36	Reach_1014	296.0	30.5	2 January 2100, 12:25	13.24
Subbasin_127	11.4	4.1	1 January 2100, 07:45	27.24	Subbasin_127	11.4	2.8	1 January 2100, 07:50	18.40
Subbasin_128	1.8	2.7	1 January 2100, 04:25	82.11	Subbasin_128	1.8	2.0	1 January 2100, 04:25	59.79
Junction_115	309.2	46.6	2 January 2100, 11:05	20.03	Junction_115	309.2	31.8	2 January 2100, 12:20	13.71
Reach_1015	309.2	46.6	2 January 2100, 11:35	19.79	Reach_1015	309.2	31.8	2 January 2100, 12:50	13.52
Subbasin_132	2.2	3.6	1 January 2100, 04:05	87.76	Subbasin_132	2.2	2.5	1 January 2100, 04:10	62.05
Saugeen Flow Gauge	311.4	47.5	2 January 2100, 11:35	20.27	Saugeen Flow Gauge	311.4	32.6	1 January 2100, 10:20	13.86
Reach_1016	30.3	10.4	1 January 2100, 09:25	27.44	Reach_1016	30.3	7.3	1 January 2100, 09:20	19.30
Subbasin_131	3.1	5.6	1 January 2100, 04:10	24.05	Subbasin_131	3.1	4.0	1 January 2100, 04:10	17.25
Junction_117	344.8	57.0	1 January 2100, 10:20	20.93	Junction_117	344.8	40.2	1 January 2100, 10:15	14.37
Reach_1017	344.8	57.0	1 January 2100, 10:25	20.82	Reach_1017	344.8	40.1	1 January 2100, 10:30	14.29
							1.9	1 January 2100, 10:30	
Subbasin_133	2.6	2.7	1 January 2100, 04:40	61.26	Subbasin_133	2.6			43.40
Junction_118	347.3	57.9	1 January 2100, 10:35	21.12	Junction_118	347.3	40.8	1 January 2100, 10:30	14.51
Reach_1018	347.3	57.9	1 January 2100, 10:50	20.95	Reach_1018	347.3	40.8	1 January 2100, 10:50	14.38
Subbasin_136	1.7	3.0	1 January 2100, 04:15	28.26	Subbasin_136	1.7	2.3	1 January 2100, 04:20	22.12
Subbasin_134	0.3	0.9	1 January 2100, 05:05	38.72	Subbasin_134	0.3	0.7	1 January 2100, 05:05	31.18
Junction_119	0.3	0.9	1 January 2100, 05:05	38.72	Junction_119	0.3	0.7	1 January 2100, 05:05	31.18
Reach_1019	0.3	0.9	1 January 2100, 05:20	38.60	Reach_1019	0.3	0.7	1 January 2100, 05:20	31.09
Subbasin_135	0.3	1.8	1 January 2100, 03:45	32.26	Subbasin_135	0.3	1.4	1 January 2100, 03:45	25.37
Junction_120	0.6	2.1	1 January 2100, 03:50	35.17	Junction_120	0.6	1.6	1 January 2100, 03:50	28.00
Reach_1020	0.6	2.0	1 January 2100, 04:05	35.19	Reach_1020	0.6	1.6	1 January 2100, 04:05	28.02
Subbasin_137	0.3	2.2	1 January 2100, 03:40	41.01	Subbasin_137	0.3	1.8	1 January 2100, 03:40	33.51
OutflowDurham	0.9	3.9	1 January 2100, 03:50	37.09	OutflowDurham	0.9	3.0	1 January 2100, 03:50	29.81
Junction_121	349.9	58.2	1 January 2100, 10:45	21.03	Junction_121	349.9	41.0	1 January 2100, 10:45	14.46
Reach_1021	349.9	56.8	1 January 2100, 12:45	20.14	Reach_1021	349.9	39.9	1 January 2100, 13:00	13.81
Subbasin_138	4.9	8.4	1 January 2100, 05:40	92.26	Subbasin_138	4.9	6.3	1 January 2100, 05:40	68.68
Sink-1	354.8	59.7	1 January 2100, 12:40	21.13	Sink-1	354.8	42.0	1 January 2100, 12:55	14.56

Hydrologic Peak Flow Results - Existing Conditions

Basin Model:

Saugeen_HMS_Calibrated

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC

Date: 12-Dec-23

			Date:	12-Dec-23		
		Areal Reduction Facto	r:		1.0	
Pea	k Flow Res	uits				
mm)		Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)
			ļ			
		L				
				L		
		-				
		L		L		
1						
		-				
		L				

	P 6 Hour SCS T 4 ak Discharge 2.8 0.7 3.5 0.4 0.9 1.2 1.2 1.5	Time of Peak 1 January 2100, 09:05 1 January 2100, 07:10 1 January 2100, 08:35 2 January 2100, 08:05 1 January 2100, 08:05 1 January 2100, 08:05 1 January 2100, 09:15 1 January 2100, 09:55	Volume (mm) 9.34 9.31 9.33 1.55 5.59 2.60
Subbasin_130 5.4 Junction_116 30.3 Subbasin_101 36.1 Subbasin_102 12.7 Junction_101 48.8	0.7 3.5 0.4 0.9 1.2 1.2	1 January 2100, 07:10 1 January 2100, 08:35 2 January 2100, 05:05 1 January 2100, 08:05 1 January 2100, 09:15	9.31 9.33 1.55 5.59
Junction_116 30.3 Subbasin_101 36.1 Subbasin_102 12.7 Junction_101 48.8	3.5 0.4 0.9 1.2 1.2	1 January 2100, 08:35 2 January 2100, 05:05 1 January 2100, 08:05 1 January 2100, 09:15	9.33 1.55 5.59
Subbasin_101 36.1 Subbasin_102 12.7 Junction_101 48.8	0.4 0.9 1.2 1.2	2 January 2100, 05:05 1 January 2100, 08:05 1 January 2100, 09:15	1.55 5.59
Subbasin_102 12.7 Junction_101 48.8	0.9	1 January 2100, 08:05 1 January 2100, 09:15	5.59
Junction_101 48.8	1.2	1 January 2100, 09:15	
	1.2		2.60
Reach_1001 48.8		1 January 2100, 09:55	
	1.5		2.57
Subbasin_103 24.4		1 January 2100, 09:15	5.21
Subbasin_104 1.2	0.2	1 January 2100, 06:25	9.10
Junction_102 74.4	2.8	1 January 2100, 09:20	3.54
Reach_1002 74.4	2.8	1 January 2100, 13:00	3.35
Subbasin_105 21.0	2.1	1 January 2100, 08:15	7.69
Subbasin_106 18.3	1.1	1 January 2100, 10:40	5.39
Junction_103 39.3	3.1	1 January 2100, 08:50	6.62
Reach_1003 39.3	3.1	1 January 2100, 10:10	6.51
Subbasin_107 20.7	1.4	1 January 2100, 08:35	5.22
Subbasin_108 3.3	0.8	1 January 2100, 05:10	14.42
Junction_104 137.7	7.3	1 January 2100, 11:20	4.80
Reach_1004 137.7	6.6	1 January 2100, 16:55	4.23
Subbasin_109 11.4	0.4	1 January 2100, 10:40	3.32
Subbasin_110 9.5	0.8	1 January 2100, 08:35	6.89
Junction_105 158.5	7.5	1 January 2100, 16:05	4.32
Reach_1005 158.5	6.5	2 January 2100, 01:25	3.72
Subbasin_111 25.6	0.9	1 January 2100, 15:15	3.91
Subbasin_112 6.8	0.2	1 January 2100, 14:25	3.78
Junction_106 190.9	7.4	2 January 2100, 01:00	3.75
Reach_1006 190.9	7.4	2 January 2100, 02:40	3.59
Subbasin_113 8.0	0.7	1 January 2100, 07:55	6.93
Junction_107 198.9	7.6	2 January 2100, 02:40	3.73
Reach_1007 198.9	7.6	2 January 2100, 03:10	3.66
Subbasin_114 17.0	0.8	1 January 2100, 09:20	4.02
Subbasin_115 1.4	0.4	1 January 2100, 05:30	16.40
Junction_108 217.3	8.0	2 January 2100, 03:10	3.77
Reach_1008 217.3	8.0	2 January 2100, 03:20	3.75
Subbasin_116 1.3	0.5	1 January 2100, 04:50	20.71
Junction_109 218.6	8.1	2 January 2100, 03:20	3.85
Reach_1009 218.6	8.1	2 January 2100, 05:50	3.66
Subbasin_117 9.5	0.9	1 January 2100, 09:40	8.05
Subbasin_118 9.2	2.4	1 January 2100, 05:35	16.41

Junction_110	237.3	9.2	2 January 2100, 05:35	4.33	
Reach_1010	237.3	9.2	2 January 2100, 06:10	4.28	
Subbasin_119	4.5	2.5	1 January 2100, 04:40	32.05	
Subbasin_120	3.3	1.0	1 January 2100, 05:00	18.27	
Junction_111	245.0	10.2	2 January 2100, 06:00	4.97	
Reach_1011	245.0	10.2	2 January 2100, 07:05	4.87	
Subbasin_121	15.0	1.4	1 January 2100, 08:55	7.87	
Subbasin_122	4.2	1.0	1 January 2100, 05:45	15.14	
Junction_112	264.2	11.0	2 January 2100, 06:55	5.20	
Reach_1012	264.2	11.0	2 January 2100, 09:10	4.95	
Subbasin_123	9.5	2.8	1 January 2100, 05:30	18.07	
Subbasin_124	5.4	0.8	1 January 2100, 06:35	9.99	
Junction_113	279.2	12.0	2 January 2100, 09:00	5.50	
Reach_1013	279.2	12.0	2 January 2100, 09:55	5.39	
Subbasin_125	9.0	1.8	1 January 2100, 05:50	12.92	
Subbasin_126	7.7	1.0	1 January 2100, 06:10	8.40	
Junction_114	296.0	13.2	1 January 2100, 09:25	5.69	
Reach_1014	296.0	13.2	1 January 2100, 10:20	5.58	
Subbasin_127	11.4	1.2	1 January 2100, 07:50	7.93	
Subbasin_128	1.8	1.0	1 January 2100, 04:30	30.50	
Junction_115	309.2	14.6	1 January 2100, 10:20	5.82	
Reach_1015	309.2	14.6	1 January 2100, 10:50	5.73	
Subbasin_132	2.2	1.2	1 January 2100, 04:10	30.63	
Saugeen Flow Gauge	311.4	15.1	1 January 2100, 10:50	5.91	
Reach_1016	30.3	3.5	1 January 2100, 09:30	9.21	
Subbasin_131	3.1	1.9	1 January 2100, 04:10	8.13	
Junction_117	344.8	18.6	1 January 2100, 10:45	6.22	
Reach_1017	344.8	18.6	1 January 2100, 11:00	6.18	
Subbasin_133	2.6	0.9	1 January 2100, 04:45	20.49	
Junction_118	347.3	18.9	1 January 2100, 11:00	6.29	
Reach_1018	347.3	18.9	1 January 2100, 11:20	6.23	
Subbasin_136	1.7	1.4	1 January 2100, 04:20	13.38	
Subbasin_134	0.3	0.5	1 January 2100, 05:05	21.44	
Junction_119	0.3	0.5	1 January 2100, 05:05	21.44	
Reach_1019	0.3	0.5	1 January 2100, 05:20	21.40	
Subbasin_135	0.3	0.8	1 January 2100, 03:45	15.86	
Junction_120	0.6	0.9	1 January 2100, 03:50	18.40	
Reach_1020	0.6	0.9	1 January 2100, 04:05	18.42	
Subbasin_137	0.3	1.2	1 January 2100, 03:40	23.10	
OutflowDurham	0.9	1.9	1 January 2100, 03:50	19.94	
Junction_121	349.9	19.0	1 January 2100, 11:20	6.30	
Reach_1021	349.9	18.5	1 January 2100, 13:40	6.04	
Subbasin_138	4.9	3.2	1 January 2100, 05:40	35.42	
Sink-1	354.8	19.6	1 January 2100, 13:40	6.45	

1	I	I		

Hydrologic Peak Flow Results - Climate Change

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

WILLS Date: 12-Dec-23										
Basin Model:	Saugeen_HMS_	Calibrated				Areal Reduction Facto	r:	Hazel Durham	0.766 1.0	
Peak Flow Results										
Regional Storm - Hurricane Hazel - Climate Change ΔT=2.94 1% AEP 6 Hour SCS Type 2 Climate Change (ΔT=2.94), ARF Durham=1, ARF Saugee										augeen=1
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)		Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)
Subbasin_129	24.81	49.400	17 October 1954, 03:10	225.2		Subbasin_129	24.81	21.300	1 January 2100, 09:00	71.1
Subbasin_130	5.45	14.420	17 October 1954, 01:35	266.7		Subbasin_130	5.45	6.410	1 January 2100, 07:10	84.7
Junction_116	30.26	63.360	17 October 1954, 02:40	232.7		Junction_116	30.26	27.440	1 January 2100, 08:30	73.6
Subbasin_101	36.12	14.740	17 October 1954, 22:50	87.3		Subbasin_101	36.12	6.220	2 January 2100, 04:55	23.5
Subbasin_102	12.72	26.110	17 October 1954, 02:20	217.1		Subbasin_102	12.72	11.500	1 January 2100, 08:00	69.6
Junction_101	48.84	35.030	17 October 1954, 03:45	121.1		Junction_101	48.84	15.130	1 January 2100, 09:20	35.5
Reach_1001	48.84	34.950	17 October 1954, 04:55	120.1		Reach_1001	48.84	15.090	1 January 2100, 10:40	34.9
Subbasin_103	24.35	39.820	17 October 1954, 03:25	185.5		Subbasin_103	24.35	17.570	1 January 2100, 09:10	60.5
Subbasin_104	1.18	3.670	17 October 1954, 00:55	296.6		Subbasin_104	1.18	1.700	1 January 2100, 06:20	97.0
Junction_102	74.37	77.340	17 October 1954, 04:00	144.3		Junction_102	74.37	33.830	1 January 2100, 09:40	44.3
Reach_1002	74.37	77.160	17 October 1954, 06:55	140.7		Reach_1002	74.37	33.740	1 January 2100, 13:00	41.9
Subbasin_105	21.00	44.420	17 October 1954, 02:30	227.6		Subbasin_105	21.00	19.660	1 January 2100, 08:15	73.3
Subbasin_106	18.32	24.120	17 October 1954, 04:50	161.9		Subbasin_106	18.32	10.760	1 January 2100, 10:35	54.1
Junction_103	39.31	67.800	17 October 1954, 03:05	197.0		Junction_103	39.31	30.080	1 January 2100, 08:50	64.3
Reach_1003	39.31	67.740	17 October 1954, 03:45	195.5		Reach_1003	39.31	30.050	1 January 2100, 09:35	63.4
Subbasin_107	20.67	38.170	17 October 1954, 02:45	201.0		Subbasin_107	20.67	16.860	1 January 2100, 08:25	65.0
Subbasin_108	3.34	13.900	17 October 1954, 00:05	367.7		Subbasin_108	3.34	7.170	1 January 2100, 05:10	128.9
Junction_104	137.68	182.470	17 October 1954, 05:05	170.9		Junction_104	137.68	81.420	1 January 2100, 10:20	53.6
Reach_1004	137.68	175.910	17 October 1954, 09:50	163.4		Reach_1004	137.68	79.470	1 January 2100, 14:55	49.0
Subbasin_109	11.36	15.280	17 October 1954, 04:45	164.7		Subbasin_109	11.36	6.580	1 January 2100, 10:30	53.0
Subbasin_110	9.48	18.310	17 October 1954, 02:50	211.9		Subbasin_110	9.48	8.070	1 January 2100, 08:30	68.2
Junction_105	158.53	202.840	17 October 1954, 09:25	166.4		Junction_105	158.53	91.620	1 January 2100, 14:35	50.4
Reach_1005	158.53	168.310	17 October 1954, 17:20	155.1		Reach_1005	158.53	75.100	1 January 2100, 22:20	43.5
Subbasin_111	25.59	23.400	17 October 1954, 09:10	137.6		Subbasin_111	25.59	9.850	1 January 2100, 15:10	44.4
Subbasin_112	6.81	6.620	17 October 1954, 08:15	141.5		Subbasin_112	6.81	2.800	1 January 2100, 14:20	45.7
Junction_106	190.93	194.870	17 October 1954, 17:00	152.3		Junction_106	190.93	86.560	1 January 2100, 22:05	43.7
Reach_1006	190.93	194.340	17 October 1954, 17:40	150.5		Reach_1006	190.93	86.250	1 January 2100, 23:00	42.4
Subbasin_113	7.99	16.920	17 October 1954, 02:10	222.9		Subbasin_113	7.99	7.530	1 January 2100, 07:50	71.7
Junction_107	198.92	200.140	17 October 1954, 17:40	153.4		Junction_107	198.92	88.840	1 January 2100, 23:00	43.6
Reach_1007	198.92	199.300	17 October 1954, 18:05	152.6		Reach_1007	198.92	88.000	1 January 2100, 23:40	43.1
Subbasin_114	17.00	26.410	17 October 1954, 03:35	176.7		Subbasin_114	17.00	11.740	1 January 2100, 09:15	58.1
Subbasin_115	1.37	5.700	17 October 1954, 00:15	377.4		Subbasin_115	1.37	2.840	1 January 2100, 05:30	127.9
Junction_108	217.29	212.800	17 October 1954, 17:30	155.9		Junction_108	217.29	94.090	1 January 2100, 23:15	44.8
Reach_1008	217.29	212.790	17 October 1954, 17:35	155.7		Reach_1008	217.29	94.080	1 January 2100, 23:20	44.7
Subbasin_116	1.27	6.710	16 October 1954, 23:50	463.6		Subbasin_116	1.27	3.660	1 January 2100, 04:50	167.3
Junction_109	218.56	214.870	17 October 1954, 17:35	157.5		Junction_109	218.56	95.210	1 January 2100, 23:20	45.4
Reach_1009	218.56	214.680	17 October 1954, 18:50	154.8		Reach_1009	218.56	95.090	2 January 2100, 00:55	43.7
Subbasin_117	9.51	17.490	17 October 1954, 03:40	215.1		Subbasin_117	9.51	7.470	1 January 2100, 09:40	67.8
			1		1				i	

Subbasin_118

9.23

18.540

17 October 1954, 00:15

365.3

Subbasin_118

9.23

37.120

5

1 January 2100, 05:30

Junction_110	237.30	234.120	17 October 1954, 18:25	165.4
Reach_1010	237.30	234.110	17 October 1954, 18:45	164.9
Subbasin_119	4.46	25.180	16 October 1954, 23:40	496.0
Subbasin_120	3.29	16.800	16 October 1954, 24:00	452.4
Junction_111	245.04	246.980	17 October 1954, 18:40	174.8
Reach_1011	245.04	246.960	17 October 1954, 19:05	173.5
Subbasin_121	14.99	29.310	17 October 1954, 03:05	219.2
Subbasin_122	4.22	16.810	17 October 1954, 00:25	367.8
Junction_112	264.25	262.830	17 October 1954, 18:30	179.2
Reach_1012	264.25	262.810	17 October 1954, 19:30	176.3
Subbasin_123	9.55	41.820	17 October 1954, 00:15	398.9
Subbasin_124	5.42	16.970	17 October 1954, 01:00	303.9
Junction_113	279.22	281.270	17 October 1954, 19:20	186.4
Reach_1013	279.22	281.260	17 October 1954, 20:00	185.4
Subbasin_125	9.03	33.960	17 October 1954, 00:25	346.6
Subbasin_126	7.72	24.700	17 October 1954, 00:45	299.4
Junction_114	295.97	299.680	17 October 1954, 19:50	193.3
Reach 1014	295.97	299.680	17 October 1954, 20:20	192.0
Subbasin_127	11.40	25.650	17 October 1954, 02:10	235.5
Subbasin_128	1.85	11.190	16 October 1954, 23:30	522.4
Junction_115	309.22	311.590	17 October 1954, 20:15	195.6
Reach_1015	309.22	311.560	17 October 1954, 20:13	194.5
Subbasin_132	2.19	13.980	16 October 1954, 23:15	534.0
Saugeen Flow Gauge	311.41	315.690	17 October 1954, 20:45	196.9
Reach_1016	30.26	63.340	17 October 1954, 03:45	231.1
Subbasin_131	3.11	21.460	16 October 1954, 23:15	154.1
Junction 117	344.78	376.030	17 October 1954, 03:35	199.5
Reach_1017	344.78	375.930	17 October 1954, 03:40	199.1
Subbasin_133	2.57	13.080	16 October 1954, 23:45	441.6
Junction_118	347.35	381.500	17 October 1954, 03:40	200.9
Reach_1018	347.35	381.480	17 October 1954, 03:55	200.4
Subbasin_136	1.71	9.900	16 October 1954, 03:33	145.9
Subbasin_138	0.27	2.870	17 October 1954, 00:05	261.3
Junction_119	0.27	2.870	17 October 1954, 00:05	261.3
Reach_1019	0.27	2.840	17 October 1954, 00:05	261.1
Subbasin 135	0.27	4.040	16 October 1954, 22:35	201.1
Junction_120	0.52	5.890	16 October 1954, 22:33	204.8
Reach 1020	0.58	5.890	16 October 1954, 23:20	230.7
Subbasin_137	0.38	3.980	16 October 1954, 23:20	230.7
OutflowDurham	0.28	9.450	16 October 1954, 22:23	246.4
Junction_121	349.92	384.310	17 October 1954, 03:50	200.2
Reach_1021	347.72	377.780	17 October 1954, 05:05	197.4
Subbasin_138	4.88	30.880	17 October 1954, 05:05	528.4
Subbasin_138	4.88 354.80	30.880	17 October 1954, 00:30 17 October 1954, 05:05	202.0

Reach_1010 I Subbasin_120 I Subbasin_121 I Junction_111 I Subbasin_121 I Subbasin_122 I Subbasin_123 I Subbasin_123 I Subbasin_124 I Subbasin_123 I Subbasin_124 I Subbasin_123 I Subbasin_124 I Subbasin_125 I Subbasin_126 I Subbasin_127 I Subbasin_128 I Subbasin_127 I Subbasin_128 I Subbasin_128 I Subbasin_128 I Subbasin_128 I Subbasin_131 I Subbasin_132 I Subbasin_131 I Subbasin_131 I Subbasin_131 I Subbasin_131 I Subbasin_133 I Subbasin_133 I Subbasin_133 I Subbasin_133 I Subbasin_133 I Subbasin_134 I Subbasin_135 I Subbasin_134 I Subbasin_133 <th>237.30 237.30 4.46 3.29 245.04 14.99 4.22 264.25 9.55 5.42 279.22 9.03 7.72 279.22 9.03 7.72 295.97 11.40 1.85 309.22 309.22 2.19 311.41 30.26 3.11</th> <th>234.120 234.110 25.180 16.800 246.980 246.960 29.310 16.810 262.830 262.810 41.820 16.970 281.270 281.270 281.270 281.240 33.960 24.700 299.680 299.680 299.680 25.650 11.190 311.560 13.980 315.690 63.340 21.460</th> <th> 17 October 1954, 18:45 17 October 1954, 18:45 16 October 1954, 23:40 16 October 1954, 24:00 17 October 1954, 24:00 17 October 1954, 19:05 17 October 1954, 00:25 17 October 1954, 00:15 17 October 1954, 00:15 17 October 1954, 00:15 17 October 1954, 00:25 17 October 1954, 02:10 16 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 </th> <th>165.4 164.9 496.0 452.4 174.8 173.5 219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0 196.9</th> <th></th> <th>Junction_110 Reach_1010 Subbasin_119 Subbasin_120 Junction_111 Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015 Subbasin_132</th> <th>237.30 237.30 4.46 3.29 245.04 245.04 14.99 4.22 264.25 264.25 264.25 5.42 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 11.40 1.85 309.22 309.22 2.19</th> <th>104.160 104.150 14.870 8.820 111.340 111.330 12.580 8.090 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.250 126.980 126.970 16.210 11.420 135.500 1135.</th> <th>2 January 2100, 00:40 2 January 2100, 01:00 1 January 2100, 04:40 1 January 2100, 05:10 2 January 2100, 05:55 2 January 2100, 01:30 1 January 2100, 05:45 2 January 2100, 05:45 1 January 2100, 03:40 2 January 2100, 04:25 1 January 2100, 04:25 1 January 2100, 04:25</th> <th>47.8 47.4 190.4 158.8 51.5 50.6 69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 775.4 205.5 57.5 56.8</th>	237.30 237.30 4.46 3.29 245.04 14.99 4.22 264.25 9.55 5.42 279.22 9.03 7.72 279.22 9.03 7.72 295.97 11.40 1.85 309.22 309.22 2.19 311.41 30.26 3.11	234.120 234.110 25.180 16.800 246.980 246.960 29.310 16.810 262.830 262.810 41.820 16.970 281.270 281.270 281.270 281.240 33.960 24.700 299.680 299.680 299.680 25.650 11.190 311.560 13.980 315.690 63.340 21.460	 17 October 1954, 18:45 17 October 1954, 18:45 16 October 1954, 23:40 16 October 1954, 24:00 17 October 1954, 24:00 17 October 1954, 19:05 17 October 1954, 00:25 17 October 1954, 00:15 17 October 1954, 00:15 17 October 1954, 00:15 17 October 1954, 00:25 17 October 1954, 02:10 16 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 	165.4 164.9 496.0 452.4 174.8 173.5 219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0 196.9		Junction_110 Reach_1010 Subbasin_119 Subbasin_120 Junction_111 Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015 Subbasin_132	237.30 237.30 4.46 3.29 245.04 245.04 14.99 4.22 264.25 264.25 264.25 5.42 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 279.22 11.40 1.85 309.22 309.22 2.19	104.160 104.150 14.870 8.820 111.340 111.330 12.580 8.090 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.240 118.250 126.980 126.970 16.210 11.420 135.500 1135.	2 January 2100, 00:40 2 January 2100, 01:00 1 January 2100, 04:40 1 January 2100, 05:10 2 January 2100, 05:55 2 January 2100, 01:30 1 January 2100, 05:45 2 January 2100, 05:45 1 January 2100, 03:40 2 January 2100, 04:25 1 January 2100, 04:25 1 January 2100, 04:25	47.8 47.4 190.4 158.8 51.5 50.6 69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 775.4 205.5 57.5 56.8
Subbasin_119 Image: Subbasin_120 Junction_111 Image: Subbasin_121 Subbasin_121 Image: Subbasin_122 Junction_112 Image: Subbasin_123 Subbasin_123 Image: Subbasin_123 Subbasin_123 Image: Subbasin_123 Junction_113 Image: Subbasin_124 Subbasin_124 Image: Subbasin_125 Subbasin_125 Image: Subbasin_126 Subbasin_126 Image: Subbasin_126 Junction_114 Image: Subbasin_127 Subbasin_128 Image: Subbasin_128 Junction_115 Image: Subbasin_128 Subbasin_128 Image: Subbasin_132 Junction_115 Image: Subbasin_132 Subbasin_132 Image: Subbasin_131 Subbasin_131 Image: Subbasin_133 Junction_117 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Junction_118 Image: Subbasin_133 Junction_117 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Junction_118 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Junction_118 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_134 Image: Subbasin_134	4.46 3.29 245.04 14.99 4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	25.180 16.800 246.980 246.980 29.310 16.810 262.830 262.830 262.830 262.830 262.810 262.830 262.810 262.830 262.810 262.830 262.810 262.830 263.260 297.680 297.680 211.590 311.590 311.560 315.690 43.340	16 October 1954, 23:40 16 October 1954, 24:00 17 October 1954, 18:40 17 October 1954, 19:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 18:30 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 00:25 16 October 1954, 20:30 17 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45 17 October 1954,	496.0 452.4 174.8 173.5 219.2 367.8 179.2 176.3 398.9 303.9 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_119 Subbasin_120 Junction_111 Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Subbasin_123 Subbasin_123 Subbasin_123 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	4.46 3.29 245.04 14.99 4.22 264.25 264.25 9.55 5.42 279.22 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 309.22	14.870 8.820 111.340 111.330 12.580 8.090 118.240 118.240 20.850 7.590 126.980 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	I January 2100, 04:40 January 2100, 05:10 2 January 2100, 00:55 2 January 2100, 08:55 January 2100, 08:55 January 2100, 05:45 January 2100, 01:25 January 2100, 01:25 January 2100, 05:25 JJanuary 2100, 05:25 JJanuary 2100, 05:25 JJanuary 2100, 05:45 JJanuary 2100, 03:45 JJanuary 2100, 03:45	190.4 158.8 51.5 50.6 69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5
Subbasin_120 I Subbasin_121 I Reach_1011 I Subbasin_122 I Subbasin_123 I Subbasin_123 I Subbasin_124 I Subbasin_123 I Subbasin_124 I Subbasin_123 I Subbasin_124 I Subbasin_125 I Subbasin_126 I Subbasin_127 I Subbasin_128 I Subbasin_127 I Subbasin_128 I Subbasin_127 I Subbasin_128 I Subbasin_129 I Subbasin_128 I Subbasin_131 I Reach_1015 I Subbasin_132 I Subbasin_131 I Junction_117 I Reach_1017 I Subbasin_133 I Junction_118 I Subbasin_133 I Subbasin_133 I Subbasin_133 I Subbasin_134 I Subbasin_134 I Subbasin_134 I	3.29 245.04 245.04 14.99 4.22 264.25 264.25 2.64.25 5.42 2.79.22 2.79.22 2.79.22 2.79.22 2.79.22 2.79.22 2.79.22 2.9.03 7.72 2.95.97 11.40 1.85 3.09.22 2.19 3.11.41 3.0.26 3.11	16.800 246.980 246.980 29,310 16.810 262.830 262.810 41.820 16.970 281.270 281.260 33.960 244.700 299.680 25.650 11.190 311.590 315.690 43.340	16 October 1954, 24:00 17 October 1954, 18:40 17 October 1954, 18:40 17 October 1954, 19:55 17 October 1954, 00:25 17 October 1954, 00:25 17 October 1954, 00:25 17 October 1954, 18:30 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 00:25 17 October 1954, 00:26 17 October 1954, 00:25 17 October 1954, 02:10 16 October 1954, 02:15 17 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45	452.4 174.8 173.5 219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_120 Junction_111 Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	3.29 245.04 245.04 14.99 4.22 264.25 264.25 5.42 279.22 279.22 279.22 279.22 279.22 279.22 279.22 295.97 295.97 295.97 11.40 1.85 309.22 309.22	8.820 111.340 111.330 12.580 8.090 118.240 118.220 20.850 7.590 126.980 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	I January 2100, 05:10 Z January 2100, 01:30 January 2100, 01:30 I January 2100, 08:55 J January 2100, 05:45 J January 2100, 05:45 J January 2100, 01:25 J January 2100, 02:50 J January 2100, 05:45 J January 2100, 03:45	158.8 51.5 50.6 69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Junction_111 Reach_1011 Reach_1012 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Subbasin_127 Subbasin_128 Junction_114 Reach_1014 Subbasin_128 Subbasin_128 Subbasin_128 Junction_114 Reach_1014 Subbasin_128 Junction_115 Subbasin_128 Subbasin_128 Subbasin_128 Subbasin_131 Reach_1014 Subbasin_132 Igeen Flow Gauge Subbasin_131 Subbasin_131 Junction_117 Reach_1016 Subbasin_133 Junction_117 Subbasin_133 Junction_118 Subbasin_133 Subbasin_133	245.04 245.04 14.99 4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	246.980 246.960 29.310 16.810 262.830 262.830 262.810 41.820 16.970 281.260 281.260 33.960 299.680 299.680 299.680 299.680 299.680 25.650 11.190 311.560 13.980 315.690 63.340	17 October 1954, 18:40 17 October 1954, 19:05 17 October 1954, 03:05 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 00:25 17 October 1954, 00:26 17 October 1954, 00:25 17 October 1954, 02:10 16 October 1954, 02:15 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45	174.8 173.5 219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Junction_111 Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	245.04 245.04 14.99 4.22 264.25 264.25 9.55 5.42 279.22 279.22 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22	111.340 111.330 12.580 8.090 118.240 118.240 20.850 7.590 126.980 126.970 16.210 11.420 135.500 1135.500 11.320 6.790 141.190	2 January 2100, 00:55 2 January 2100, 01:30 1 January 2100, 08:55 2 January 2100, 01:25 2 January 2100, 01:25 2 January 2100, 02:55 1 January 2100, 05:25 1 January 2100, 05:45 2 January 2100, 03:15 1 January 2100, 03:45 2 January 2100, 03:45 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 03:45 2 January 2100, 03:45	51.5 50.6 69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5
Reach_1011 Image: second sec	245.04 14.99 4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	246,960 29,310 16,810 262,830 262,810 41,820 16,970 281,270 281,260 33,960 244,700 299,680 299,680 299,680 299,680 25,650 11,190 311,590 311,560 13,980 315,690 63,340	17 October 1954, 19:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 03:05 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 01:05 17 October 1954, 01:00 17 October 1954, 02:00 17 October 1954, 02:00 17 October 1954, 00:45 17 October 1954, 02:00 17 October 1954, 02:01 17 October 1954, 02:02 17 October 1954, 20:20 17 October 1954, 20:20 17 October 1954, 02:10 16 October 1954, 23:30 17 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45	173.5 219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Reach_1011 Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	245.04 14.99 4.22 264.25 9.55 5.42 279.22 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 309.22	111.330 12.580 8.090 118.240 118.220 20.850 7.590 126.980 126.970 16.210 111.420 135.500 135.500 11320 6.790 141.200 141.190	2 January 2100, 01:30 1 January 2100, 08:55 1 January 2100, 05:45 2 January 2100, 01:25 2 January 2100, 02:55 1 January 2100, 05:45 1 January 2100, 06:35 2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 03:45 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 03:40	50.6 49.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_121 Image: Subbasin_122 Subbasin_121 Image: Subbasin_123 Subbasin_123 Image: Subbasin_123 Subbasin_123 Image: Subbasin_124 Subbasin_125 Image: Subbasin_125 Subbasin_125 Image: Subbasin_125 Subbasin_126 Image: Subbasin_126 Subbasin_126 Image: Subbasin_127 Subbasin_127 Image: Subbasin_128 Subbasin_128 Image: Subbasin_128 Subbasin_128 Image: Subbasin_131 Subbasin_132 Image: Subbasin_131 Subbasin_131 Image: Subbasin_131 Subbasin_131 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Subbasin_133 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_134 Image: Subbasin_134 Subbasin_134 Image: Subbasin_134	14.99 4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	29.310 16.810 262.830 262.810 41.820 16.970 281.270 281.260 33.960 24.700 299.680 299.680 299.680 299.680 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 03:05 17 October 1954, 00:25 17 October 1954, 00:25 17 October 1954, 19:30 17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 00:00 17 October 1954, 00:00 17 October 1954, 19:20 17 October 1954, 19:20 17 October 1954, 00:25 17 October 1954, 20:30 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45	219.2 367.8 179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_121 Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_125 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	14.99 4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22	12.580 8.090 118.240 118.220 20.850 7.590 126.980 126.970 16.210 11.420 135.500 1135.500 11.320 6.790 141.200 141.190	I January 2100, 08:55 J January 2100, 03:45 2 January 2100, 01:25 2 January 2100, 02:55 J January 2100, 05:25 J January 2100, 05:25 J January 2100, 05:45 J January 2100, 03:15 J January 2100, 03:45 J January 2100, 04:30 J January 2100, 03:40 Z January 2100, 04:25	69.1 121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_122 Image: Subbasin_123 Reach_1012 Image: Subbasin_123 Subbasin_123 Image: Subbasin_124 Junction_113 Image: Subbasin_125 Subbasin_126 Image: Subbasin_126 Subbasin_126 Image: Subbasin_126 Junction_114 Image: Subbasin_126 Subbasin_126 Image: Subbasin_127 Subbasin_127 Image: Subbasin_128 Junction_115 Image: Subbasin_132 Subbasin_132 Image: Subbasin_131 Queen Flow Gauge Image: Subbasin_131 Junction_117 Image: Subbasin_133 Subbasin_131 Image: Subbasin_133 Junction_117 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Junction_118 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134	4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	16.810 262.830 262.810 41.820 16.970 281.270 281.260 33.960 24.700 299.680 25.650 11.190 311.590 315.690 63.340	17 October 1954, 00:25 17 October 1954, 18:30 17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 00:35 17 October 1954, 01:00 17 October 1954, 01:00 17 October 1954, 01:00 17 October 1954, 02:00 17 October 1954, 00:25 17 October 1954, 00:45 17 October 1954, 00:45 17 October 1954, 00:20 17 October 1954, 20:20 17 October 1954, 20:30 17 October 1954, 20:41 17 October 1954, 20:42 16 October 1954, 20:43 16 October 1954, 20:43 17 October 1954, 20:43	367.8 179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_122 Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	4.22 264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	8.090 118.240 118.220 20.850 7.590 126.970 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	1 January 2100, 05:45 2 January 2100, 01:25 2 January 2100, 02:55 1 January 2100, 05:25 1 January 2100, 05:35 2 January 2100, 05:45 1 January 2100, 05:45 1 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 03:40	121.3 52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Junction_112 Reach_1012 Subbasin_123 Junction_113 Junction_113 Reach_1013 Subbasin_125 Jubbasin_125 Jubbasin_126 Junction_114 Reach_1014 Subbasin_127 Junction_115 Subbasin_128 Junction_115 Subbasin_131 Grach_1016 Subbasin_131 Grach_1017 Subbasin_131 Grach_1017 Subbasin_133 Junction_118 Subbasin_134 Subb	264.25 264.25 9.55 5.42 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	262.830 262.810 41.820 281.270 281.260 33.960 24.700 299.680 299.680 299.680 25.650 11.190 311.590 311.590 315.690 63.340	17 October 1954, 18:30 17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 00:00 17 October 1954, 19:20 17 October 1954, 19:20 17 October 1954, 00:25 17 October 1954, 20:20 17 October 1954, 20:20 17 October 1954, 20:10 16 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45	179.2 176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Junction_112 Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	264.25 9.55 5.42 279.22 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	118.240 118.220 20.850 7.590 126.980 126.970 16.210 11.420 135.500 1135.500 11.320 6.790 141.200	2 January 2100, 01:25 2 January 2100, 02:55 1 January 2100, 05:25 2 January 2100, 05:35 2 January 2100, 02:50 2 January 2100, 03:15 1 January 2100, 05:45 2 January 2100, 03:45 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 03:40 2 January 2100, 04:30 2 January 2100, 04:25	52.8 50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Reach_1012 Image: Control of the sector of the	264.25 9.55 5.42 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	262.810 41.820 281.270 281.260 33.960 24.700 299.680 299.680 25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 19:30 17 October 1954, 00:15 17 October 1954, 01:00 17 October 1954, 00:25 17 October 1954, 00:45 17 October 1954, 00:45 17 October 1954, 20:20 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 20:30 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45	176.3 398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Reach_1012 Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	264.25 9.55 5.42 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	118.220 20.850 7.590 126.980 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	2 January 2100, 02:55 1 January 2100, 05:25 1 January 2100, 06:35 2 January 2100, 02:50 2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 03:45 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 04:30	50.8 134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_123 Image: Subbasin_124 Subbasin_124 Image: Subbasin_125 Subbasin_125 Image: Subbasin_126 Subbasin_126 Image: Subbasin_126 Junction_114 Image: Subbasin_127 Subbasin_127 Image: Subbasin_127 Subbasin_128 Image: Subbasin_128 Junction_115 Image: Subbasin_132 Subbasin_132 Image: Subbasin_131 Subbasin_131 Image: Subbasin_131 Junction_117 Image: Subbasin_133 Junction_118 Image: Subbasin_133 Junction_133 Image: Subbasin_133 Junction_118 Image: Subbasin_134	9.55 5.42 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	41.820 16.970 281.270 281.260 33.960 24.700 299.680 299.680 299.680 299.680 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 00:15 17 October 1954, 01:00 17 October 1954, 19:20 17 October 1954, 20:00 17 October 1954, 00:25 17 October 1954, 02:20 17 October 1954, 20:20 16 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45	398.9 303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_123 Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	9.55 5.42 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	20.850 7.590 126.980 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	1 January 2100, 05:25 1 January 2100, 04:35 2 January 2100, 02:50 2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 06:05 2 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 04:30 2 January 2100, 04:25	134.4 95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_124 Image: Subbasin_124 Junction_113 Image: Subbasin_126 Subbasin_126 Image: Subbasin_126 Junction_114 Image: Subbasin_126 Subbasin_126 Image: Subbasin_127 Subbasin_128 Image: Subbasin_128 Junction_115 Image: Subbasin_128 Junction_115 Image: Subbasin_132 Subbasin_132 Image: Subbasin_131 Queen Flow Gauge Image: Subbasin_131 Junction_117 Image: Subbasin_133 Subbasin_133 Image: Subbasin_133 Junction_118 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134	5.42 279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	16.970 281.270 281.260 33.960 24.700 299.680 25.650 11.190 311.590 315.690 63.340	17 October 1954, 01:00 17 October 1954, 19:20 17 October 1954, 20:00 17 October 1954, 00:25 17 October 1954, 00:20 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 20:30 17 October 1954, 20:31 17 October 1954, 20:32 16 October 1954, 20:35 16 October 1954, 20:35 17 October 1954, 20:35 17 October 1954, 20:35 17 October 1954, 20:35	303.9 186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 195.6 195.5 534.0		Subbasin_124 Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	5.42 279.22 9.03 7.72 295.97 11.40 1.85 309.22 309.22	7.590 126.980 126.970 16.210 11.420 135.500 1135.500 1135.500 11.320 6.790 141.200 141.190	1 January 2100, 06:35 2 January 2100, 02:50 2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 06:05 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 04:30 2 January 2100, 04:30 2 January 2100, 04:25	95.7 54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Junction_113 Reach_1013 Subbasin_125 Junction_114 Subbasin_126 Reach_1014 Subbasin_127 Subbasin_127 Subbasin_128 Gubbasin_131 Gueen Flow Gauge Reach_1015 Subbasin_131 Gueen flow Gauge Cubbasin_131 Gubbasin_131 Gubbasin_131 Gubbasin_133 Gubbasin_133 Subbasin_134 Gubbasin_134 Gub	279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	281.270 281.260 33.960 24.700 299.680 299.680 25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 19:20 17 October 1954, 20:00 17 October 1954, 20:25 17 October 1954, 00:25 17 October 1954, 00:45 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 23:30 17 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45	186.4 185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Junction_113 Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	279.22 279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	126.980 126.970 16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	2 January 2100, 02:50 2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 06:05 2 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	54.5 53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Reach_1013 Image: Subbasin_125 Subbasin_126 Image: Subbasin_126 Junction_114 Image: Subbasin_127 Subbasin_128 Image: Subbasin_128 Junction_115 Image: Subbasin_128 Junction_115 Image: Subbasin_128 Subbasin_128 Image: Subbasin_132 Queen Flow Gauge Image: Subbasin_131 Junction_117 Image: Subbasin_133 Reach_1017 Image: Subbasin_133 Junction_118 Image: Subbasin_134 Subbasin_133 Image: Subbasin_134	279.22 9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	281.260 33.960 24.700 299.680 299.680 299.680 25.650 11.190 311.590 311.590 311.540 13.980 315.690 63.340	17 October 1954, 20:00 17 October 1954, 00:25 17 October 1954, 00:45 17 October 1954, 00:45 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 20:30 17 October 1954, 20:30 17 October 1954, 20:31 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45 17 October 1954, 20:45	185.4 346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Reach_1013 Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	279.22 9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	126.970 16.210 11.420 135.500 1135.500 11.320 6.790 141.200 141.190	2 January 2100, 03:15 1 January 2100, 05:45 1 January 2100, 06:05 2 January 2100, 03:45 1 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	53.8 113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015 Subbasin_132 ugeen Flow Gauge Subbasin_131 Junction_117 Subbasin_132 ugeen Flow Gauge Subbasin_132 Junction_117 Subbasin_133 Junction_117 Subbasin_133 Junction_118 Subbasin_133 Junction_118 Subbasin_134	9.03 7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	33.960 24.700 299.680 25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 00:25 17 October 1954, 00:45 17 October 1954, 19:50 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 23:30 17 October 1954, 20:45 16 October 1954, 20:45	346.6 299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_125 Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	9.03 7.72 295.97 295.97 11.40 1.85 309.22 309.22	16.210 11.420 135.500 135.500 11.320 6.790 141.200 141.190	1 January 2100, 05:45 1 January 2100, 06:05 2 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	113.9 97.1 56.8 55.9 75.4 205.5 57.5 56.8
Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Subbasin_128 Junction_115 Subbasin_128 Junction_115 Reach_1015 Subbasin_132 Queen Flow Gauge Junction_117 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Subbasin_134	7.72 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	24.700 299.680 299.680 25.650 11.190 311.590 311.540 13.980 315.690 63.340	17 October 1954, 00:45 17 October 1954, 19:50 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 20:30 17 October 1954, 20:30 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45	299.4 193.3 192.0 235.5 522.4 195.6 194.5 534.0		Subbasin_126 Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	7.72 295.97 295.97 11.40 1.85 309.22 309.22	11.420 135.500 135.500 11.320 6.790 141.200 141.190	1 January 2100, 06:05 2 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	97.1 56.8 55.9 75.4 205.5 57.5 56.8
Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015 Reach_1015 Subbasin_132 Ugeen Flow Gauge Reach_1016 Subbasin_131 Gunction_117 Subbasin_133 Gunction_118 Subbasin_133 Junction_118 Subbasin_136 Subbasin_134	295.97 295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	299.680 299.680 25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 19:50 17 October 1954, 20:20 17 October 1954, 20:20 16 October 1954, 23:30 17 October 1954, 20:45 17 October 1954, 20:45 16 October 1954, 20:45	193.3 192.0 235.5 522.4 195.6 194.5 534.0		Junction_114 Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	295.97 295.97 11.40 1.85 309.22 309.22	135.500 135.500 11.320 6.790 141.200 141.190	2 January 2100, 03:10 2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	56.8 55.9 75.4 205.5 57.5 56.8
Reach_1014 Reach_127 Subbasin_128 Junction_115 Reach_1015 Subbasin_132 ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Subbasin_136 Subbasin_136	295.97 11.40 1.85 309.22 2.19 311.41 30.26 3.11	299.680 25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 20:20 17 October 1954, 22:10 16 October 1954, 23:30 17 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 20:45 16 October 1954, 20:45 17 October 1954, 20:45	192.0 235.5 522.4 195.6 194.5 534.0		Reach_1014 Subbasin_127 Subbasin_128 Junction_115 Reach_1015	295.97 11.40 1.85 309.22 309.22	135.500 11.320 6.790 141.200 141.190	2 January 2100, 03:45 1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	55.9 75.4 205.5 57.5 56.8
Subbasin_127 Subbasin_128 Junction_115 Reach_1015 Subbasin_132 ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_134	11.40 1.85 309.22 2.19 311.41 30.26 3.11	25.650 11.190 311.590 311.560 13.980 315.690 63.340	17 October 1954, 02:10 16 October 1954, 23:30 17 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 23:15 17 October 1954, 20:45	235.5 522.4 195.6 194.5 534.0	· · · · ·	Subbasin_127 Subbasin_128 Junction_115 Reach_1015	11.40 1.85 309.22 309.22	11.320 6.790 141.200 141.190	1 January 2100, 07:50 1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	75.4 205.5 57.5 56.8
Subbasin_128 Junction_115 Reach_1015 Subbasin_132 Ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	1.85 309.22 2.19 311.41 30.26 3.11	11.190 311.590 311.560 13.980 315.690 63.340	16 October 1954, 23:30 17 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 23:15 17 October 1954, 20:45	522.4 195.6 194.5 534.0	· · · ·	Subbasin_128 Junction_115 Reach_1015	1.85 309.22 309.22	6.790 141.200 141.190	1 January 2100, 04:30 2 January 2100, 03:40 2 January 2100, 04:25	205.5 57.5 56.8
Junction_115 Reach_1015 Subbasin_132 Ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	309.22 309.22 2.19 311.41 30.26 3.11	311.590 311.560 13.980 315.690 63.340	17 October 1954, 20:15 17 October 1954, 20:45 16 October 1954, 23:15 17 October 1954, 20:45	195.6 194.5 534.0		Junction_115 Reach_1015	309.22 309.22	141.200 141.190	2 January 2100, 03:40 2 January 2100, 04:25	57.5 56.8
Reach_1015 Subbasin_132 ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_136	309.22 2.19 311.41 30.26 3.11	311.560 13.980 315.690 63.340	17 October 1954, 20:45 16 October 1954, 23:15 17 October 1954, 20:45	194.5 534.0		Reach_1015	309.22	141.190	2 January 2100, 04:25	56.8
Subbasin_132 ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	2.19 311.41 30.26 3.11	13.980 315.690 63.340	16 October 1954, 23:15 17 October 1954, 20:45	534.0						
ugeen Flow Gauge Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	311.41 30.26 3.11	315.690 63.340	17 October 1954, 20:45			Subbasin_132	2.19	9.230	1 January 2100, 04:10	227.7
Reach_1016 Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	30.26 3.11	63.340		196.9	1 [
Subbasin_131 Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	3.11		17 October 1954, 03:45			Saugeen Flow Gauge	311.41	143.840	2 January 2100, 04:20	58.0
Junction_117 Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134		21.460		231.1		Reach_1016	30.26	27.430	1 January 2100, 09:35	72.7
Reach_1017 Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	244.70		16 October 1954, 23:15	154.1		Subbasin_131	3.11	14.080	1 January 2100, 04:15	63.3
Subbasin_133 Junction_118 Reach_1018 Subbasin_136 Subbasin_134	344.78	376.030	17 October 1954, 03:35	199.5	1	Junction_117	344.78	157.630	1 January 2100, 09:30	59.3
Junction_118 Reach_1018 Subbasin_136 Subbasin_134	344.78	375.930	17 October 1954, 03:40	199.1	1	Reach_1017	344.78	157.550	1 January 2100, 09:40	59.1
Reach_1018 Subbasin_136 Subbasin_134	2.57	13.080	16 October 1954, 23:45	441.6		Subbasin_133	2.57	7.310	1 January 2100, 04:40	163.0
Reach_1018 Subbasin_136 Subbasin_134	347.35	381.500	17 October 1954, 03:40	200.9	1	Junction_118	347.35	160.100	1 January 2100, 09:40	59.9
Subbasin_136 Subbasin_134	347.35	381.480	17 October 1954, 03:55	200.4	1	Reach_1018	347.35	160.050	1 January 2100, 10:00	59.5
Subbasin_134	1.71	9.900	16 October 1954, 23:20	145.9	1	Subbasin_136	1.71	6.890	1 January 2100, 04:15	63.7
	0.27	2.870	17 October 1954, 00:05	261.3	1	Subbasin_134	0.27	1.830	1 January 2100, 05:05	78.6
Junction_119	0.27	2.870	17 October 1954, 00:05	261.3	┥┝	Junction_119	0.27	1.830	1 January 2100, 05:05	78.6
Reach_1019	0.27	2.840	17 October 1954, 00:05	261.1	┥┝	Reach_1019	0.27	1.790	1 January 2100, 05:00	78.4
Subbasin_135	0.27	4.040	16 October 1954, 22:35	201.1	┥┝	Subbasin_135	0.32	3.880	1 January 2100, 03:45	66.9
			16 October 1954, 22:35		┥┝					72.2
Junction_120	0.58	5.890		230.7	┥┝	Junction_120	0.58	4.380	1 January 2100, 03:50	
Reach_1020	0.58	5.890	16 October 1954, 23:20	230.7	┥┝	Reach_1020	0.58	4.380	1 January 2100, 04:00	72.2
Subbasin_137	0.28	3.980	16 October 1954, 22:25	246.4	┥╽	Subbasin_137	0.28	4.330	1 January 2100, 03:40	78.9
OutflowDurham	0.87	9.450	16 October 1954, 22:40	235.8	┥┝	OutflowDurham	0.87	8.070	1 January 2100, 03:50	74.4
Junction_121	349.92	384.310	17 October 1954, 03:50	200.2	╎╎	Junction_121	349.92	161.100	1 January 2100, 10:00	59.6
Reach_1021		377.780	17 October 1954, 05:05	197.4	╎╎	Reach_1021	349.92	157.680	1 January 2100, 12:20	57.6
Subbasin_138 Sink-1	349.92		17 October 1954, 00:30	528.4	. 1	Subbasin_138	4.88	21.340	1 January 2100, 05:40	232.7

Hydrologic Peak Flow Results - Climate Change

Peak Flow Results

Basin Model:

Saugeen_HMS_Calibrated

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC

Areal Reduction Factor:

Date: 12-Dec-23

2% AEP 6 Hour S	SCS Type 2 Climat	e Change (∆T=2.94	l), ARF Durham=1, ARF S	augeen=1
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)
Subbasin_129	24.81	18.370	1 January 2100, 09:00	61.4
Subbasin_130	5.45	5.500	1 January 2100, 07:10	72.6
Junction_116	30.26	23.630	1 January 2100, 08:25	63.4
Subbasin_101	36.12	5.300	2 January 2100, 04:55	20.0
Subbasin_102	12.72	9.840	1 January 2100, 08:00	59.5
Junction_101	48.84	12.930	1 January 2100, 09:20	30.3
Reach_1001	48.84	12.900	1 January 2100, 10:35	29.8
Subbasin_103	24.35	15.090	1 January 2100, 09:10	52.0
Subbasin_104	1.18	1.460	1 January 2100, 06:20	83.1
Junction_102	74.37	29.000	1 January 2100, 09:40	37.9
Reach_1002	74.37	28.950	1 January 2100, 12:15	35.9
Subbasin_105	21.00	16.880	1 January 2100, 08:10	62.9
Subbasin_106	18.32	9.260	1 January 2100, 10:35	46.5
Junction_103	39.31	25.840	1 January 2100, 08:50	55.3
Reach_1003	39.31	25.820	1 January 2100, 09:35	54.4
Subbasin_107	20.67	14.470	1 January 2100, 08:25	55.8
Subbasin_108	3.34	6.180	1 January 2100, 05:05	111.1
Junction_104	137.68	69.750	1 January 2100, 10:25	46.0
Reach_1004	137.68	68.120	1 January 2100, 14:55	41.9
Subbasin_109	11.36	5.630	1 January 2100, 10:30	45.3
Subbasin_110	9.48	6.910	1 January 2100, 08:30	58.4
Junction_105	158.53	78.490	1 January 2100, 14:40	43.1
Reach_1005	158.53	64.150	1 January 2100, 23:05	37.2
Subbasin_111	25.59	8.410	1 January 2100, 15:10	37.9
Subbasin_112	6.81	2.390	1 January 2100, 14:20	39.1
Junction_106	190.93	73.770	1 January 2100, 22:50	37.3
Reach_1006	190.93	73.510	1 January 2100, 23:45	36.2
Subbasin_113	7.99	6.480	1 January 2100, 07:50	61.7
Junction_107	198.92	75.720	1 January 2100, 23:45	37.2
Reach_1007	198.92	74.940	2 January 2100, 00:25	36.8
Subbasin_114	17.00	10.050	1 January 2100, 09:15	49.8
Subbasin_115	1.37	2.450	1 January 2100, 05:30	110.4
Junction_108	217.29	79.870	1 January 2100, 24:00	38.3
Reach_1008	217.29	79.870	2 January 2100, 00:10	38.2
Subbasin_116	1.27	3.170	1 January 2100, 04:50	144.6
Junction_109	218.56	80.840	2 January 2100, 00:10	38.8
Reach_1009	218.56	80.730	2 January 2100, 01:45	37.2
Subbasin_117	9.51	6.430	1 January 2100, 09:40	58.4
Subbasin_118	9.23	15.980	1 January 2100, 05:30	107.3

4% AEP 6 Hour SCS Type 2 Climate Change (ΔT=2.94), ARF Durham=1, ARF Saugeen=1												
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (mm)								
Subbasin_129	24.81	15.280	1 January 2100, 09:00	51.0								
Subbasin_130	5.45	4.560	1 January 2100, 07:05	60.3								
Junction_116	30.26	19.650	1 January 2100, 08:25	52.7								
Subbasin_101	36.12	4.350	2 January 2100, 04:55	16.4								
Subbasin_102	12.72	8.120	1 January 2100, 08:00	49.1								
Junction_101	48.84	10.660	1 January 2100, 09:20	25.0								
Reach_1001	48.84	10.640	1 January 2100, 10:35	24.6								
Subbasin_103	24.35	12.470	1 January 2100, 09:10	43.0								
Subbasin_104	1.18	1.200	1 January 2100, 06:20	68.5								
Junction_102	74.37	23.950	1 January 2100, 09:35	31.3								
Reach_1002	74.37	23.910	1 January 2100, 12:20	29.6								
Subbasin_105	21.00	13.950	1 January 2100, 08:10	52.0								
Subbasin_106	18.32	7.680	1 January 2100, 10:35	38.6								
Junction_103	39.31	21.390	1 January 2100, 08:50	45.8								
Reach_1003	39.31	21.370	1 January 2100, 09:35	45.0								
Subbasin_107	20.67	11.940	1 January 2100, 08:25	46.0								
Subbasin_108	3.34	5.140	1 January 2100, 05:05	92.4								
Junction_104	137.68	57.550	1 January 2100, 10:30	38.0								
Reach_1004	137.68	55.530	1 January 2100, 15:55	34.5								
Subbasin_109	11.36	4.620	1 January 2100, 10:30	37.2								
Subbasin_110	9.48	5.740	1 January 2100, 08:30	48.5								
Junction_105	158.53	63.640	1 January 2100, 15:35	35.5								
Reach_1005	158.53	52.350	1 January 2100, 24:00	30.5								
Subbasin_111	25.59	6.950	1 January 2100, 15:10	31.3								
Subbasin_112	6.81	1.980	1 January 2100, 14:20	32.2								
Junction_106	190.93	60.100	1 January 2100, 23:45	30.7								
Reach_1006	190.93	59.900	2 January 2100, 00:45	29.7								
Subbasin_113	7.99	5.370	1 January 2100, 07:50	51.2								
Junction_107	198.92	61.710	2 January 2100, 00:40	30.6								
Reach_1007	198.92	61.050	2 January 2100, 01:25	30.2								
Subbasin_114	17.00	8.270	1 January 2100, 09:15	41.0								
Subbasin_115	1.37	2.040	1 January 2100, 05:25	91.8								
Junction_108	217.29	64.830	2 January 2100, 01:05	31.5								
Reach_1008	217.29	64.820	2 January 2100, 01:10	31.4								
Subbasin_116	1.27	2.640	1 January 2100, 04:50	120.4								
Junction_109	218.56	65.620	2 January 2100, 01:10	31.9								
Reach_1009	218.56	65.540	2 January 2100, 02:55	30.6								
Subbasin_117	9.51	5.340	1 January 2100, 09:35	48.5								
			,									

6

Junction_110	237.30	88.320	2 January 2100, 01:30	40.8
Reach_1010	237.30	88.310	2 January 2100, 01:50	40.5
Subbasin_119	4.46	13.000	1 January 2100, 04:40	166.2
Subbasin_120	3.29	7.640	1 January 2100, 05:05	137.1
Junction_111	245.04	94.520	2 January 2100, 01:45	44.1
Reach_1011	245.04	94.510	2 January 2100, 02:25	43.3
Subbasin_121	14.99	10.810	1 January 2100, 08:55	59.3
Subbasin_122	4.22	6.980	1 January 2100, 05:40	104.5
Junction_112	264.25	100.400	2 January 2100, 02:20	45.2
Reach_1012	264.25	100.390	2 January 2100, 03:50	43.4
Subbasin_123	9.55	18.020	1 January 2100, 05:25	116.1
Subbasin_124	5.42	6.510	1 January 2100, 06:30	82.0
Junction_113	279.22	107.870	2 January 2100, 03:45	46.6
Reach_1013	279.22	107.870	2 January 2100, 04:10	46.0
Subbasin 125	9.03	13.920	1 January 2100, 05:45	97.8
Subbasin_126	7.72	9.780	1 January 2100, 05:45	83.1
Junction_114	295.97	115.120	2 January 2100, 04:05	48.5
Reach 1014	295.97	115.110	2 January 2100, 04:45	47.7
Subbasin_127	11.40	9.700	1 January 2100, 07:45	64.6
Subbasin_128	1.85	5.920	1 January 2100, 07:43	178.9
Junction_115	309.22	119.980	2 January 2100, 04:45	49.1
Reach_1015	309.22	119.950		47.1
Subbasin_132	2.19	8.000	2 January 2100, 05:30	197.2
			1 January 2100, 04:10	
Saugeen Flow Gauge	311.41	122.230	2 January 2100, 05:30	49.6
Reach_1016	30.26	23.620	1 January 2100, 09:35	62.6
Subbasin_131	3.11	12.270	1 January 2100, 04:15	54.5
Junction_117	344.78	134.950	1 January 2100, 09:40	50.8
Reach_1017	344.78	134.880	1 January 2100, 09:50	50.5
Subbasin_133	2.57	6.320	1 January 2100, 04:40	140.9
Junction_118	347.35	137.080	1 January 2100, 09:50	51.2
Reach_1018	347.35	137.050	1 January 2100, 10:10	50.9
Subbasin_136	1.71	6.070	1 January 2100, 04:15	56.1
Subbasin_134	0.27	1.630	1 January 2100, 05:05	70.0
Junction_119	0.27	1.630	1 January 2100, 05:05	70.0
Reach_1019	0.27	1.590	1 January 2100, 05:20	69.8
Subbasin_135	0.32	3.430	1 January 2100, 03:45	59.5
Junction_120	0.58	3.880	1 January 2100, 03:50	64.2
Reach_1020	0.58	3.880	1 January 2100, 04:00	64.2
Subbasin_137	0.28	3.870	1 January 2100, 03:40	70.8
OutflowDurham	0.87	7.160	1 January 2100, 03:50	66.4
Junction_121	349.92	137.900	1 January 2100, 10:10	51.0
Reach_1021	349.92	134.390	1 January 2100, 12:10	49.2
Subbasin_138	4.88	18.580	1 January 2100, 05:35	202.7
Sink-1	354.80	140.650	1 January 2100, 12:10	51.3

Sink-1	354.80	140.650	1 January 2100, 03:33	51.3		Sink-1	354.80	116.120	1 January 2100, 03:33	42.3
Subbasin_138	4.88	18.580	1 January 2100, 05:35	202.7		Subbasin_138	4.88	15.650	1 January 2100, 05:35	170.8
Reach_1021	349.92	134.390	1 January 2100, 12:10	49.2		Reach_1021	349.92	110.850	1 January 2100, 12:10	40.5
Junction_121	349.92	137.900	1 January 2100, 10:10	51.0		Junction_121	349.92	114.100	1 January 2100, 10:15	42.0
OutflowDurham	0.87	7.160	1 January 2100, 03:50	66.4		OutflowDurham	0.87	6.220	1 January 2100, 03:50	58.0
Subbasin_137	0.28	3.870	1 January 2100, 03:40	70.8		Subbasin_137	0.28	3.390	1 January 2100, 03:40	62.4
Reach_1020	0.58	3.880	1 January 2100, 04:00	64.2		Reach_1020	0.58	3.360	1 January 2100, 04:00	55.8
Junction_120	0.58	3.880	1 January 2100, 03:50	64.2		Junction_120	0.58	3.360	1 January 2100, 03:50	55.8
Subbasin_135	0.32	3.430	1 January 2100, 03:45	59.5		Subbasin_135	0.32	2.960	1 January 2100, 03:45	51.7
Reach_1019	0.27	1.590	1 January 2100, 05:20	69.8		Reach_1019	0.27	1.390	1 January 2100, 05:20	60.6
Junction_119	0.27	1.630	1 January 2100, 05:05	70.0		Junction_119	0.27	1.420	1 January 2100, 05:05	60.8
Subbasin_134	0.27	1.630	1 January 2100, 05:05	70.0		Subbasin_134	0.27	1.420	1 January 2100, 05:05	60.8
Subbasin_136	1.71	6.070	1 January 2100, 04:15	56.1		Subbasin_136	1.71	5.190	1 January 2100, 04:15	48.1
Reach_1018	347.35	137.050	1 January 2100, 10:10	50.9		Reach_1018	347.35	113.400	1 January 2100, 10:20	42.0
Junction_118	347.35	137.080	1 January 2100, 09:50	51.2		Junction_118	347.35	113.420	1 January 2100, 10:00	42.2
Subbasin_133	2.57	6.320	1 January 2100, 04:40	140.9		Subbasin_133	2.57	5.280	1 January 2100, 04:40	117.8
Reach_1017	344.78	134.880	1 January 2100, 09:50	50.5		Reach_1017	344.78	111.590	1 January 2100, 10:00	41.7
Junction_117	344.78	134.950	1 January 2100, 09:40	50.8		Junction_117	344.78	111.640	1 January 2100, 09:50	41.9
Subbasin_131	3.11	12.270	1 January 2100, 04:15	54.5		Subbasin_131	3.11	10.350	1 January 2100, 04:15	45.4
Reach_1016	30.26	23.620	1 January 2100, 09:35	62.6		Reach_1016	30.26	19.640	1 January 2100, 09:35	52.1
ugeen Flow Gauge	311.41	122.230	2 January 2100, 05:30	49.6		Saugeen Flow Gauge	311.41	99.560	2 January 2100, 06:50	40.8
Subbasin_132	2.19	8.000	1 January 2100, 04:10	197.2		Subbasin_132	2.19	6.720	1 January 2100, 04:05	165.6
Reach_1015	309.22	119.950	2 January 2100, 05:30	48.5	ĺ	Reach_1015	309.22	97.670	2 January 2100, 06:50	40.0
Junction_115	309.22	119.980	2 January 2100, 04:45	49.1	1	Junction_115	309.22	97.690	2 January 2100, 06:10	40.4
Subbasin_128	1.85	5.920	1 January 2100, 04:30	178.9	İ	Subbasin_128	1.85	4.990	1 January 2100, 04:30	150.5
Subbasin_127	11.40	9.700	1 January 2100, 07:45	64.6	1	Subbasin_127	11.40	8.050	1 January 2100, 07:45	53.6
Reach_1014	295.97	115.110	2 January 2100, 04:45	47.7		Reach_1014	295.97	93.680	2 January 2100, 06:15	39.2
Junction_114	295.97	115.120	2 January 2100, 04:05	48.5		Junction_114	295.97	93.690	2 January 2100, 05:30	39.9
Subbasin_126	7.72	9.780	1 January 2100, 06:05	83.1		Subbasin_126	7.72	8.080	1 January 2100, 06:05	68.7
Subbasin_125	9.03	13.920	1 January 2100, 05:45	97.8		Subbasin_125	9.03	11.580	1 January 2100, 05:45	81.4
Reach_1013	279.22	107.870	2 January 2100, 04:10	46.0		Reach_1013	279.22	87.750	2 January 2100, 05:35	37.8
Junction_113	279.22	107.870	2 January 2100, 03:45	46.6		Junction_113	279.22	87.750	2 January 2100, 05:05	38.4
Subbasin_124	5.42	6.510	1 January 2100, 06:30	82.0		Subbasin_124	5.42	5.390	1 January 2100, 06:30	67.9
Subbasin_123	9.55	18.020	1 January 2100, 05:25	116.1		Subbasin_123	9.55	15.030	1 January 2100, 05:25	96.8
Reach_1012	264.25	100.390	2 January 2100, 03:50	43.4		Reach_1012	264.25	81.600	2 January 2100, 05:05	35.7
Junction_112	264.25	100.400	2 January 2100, 02:20	45.2		Junction_112	264.25	81.610	2 January 2100, 03:30	37.2
Subbasin_122	4.22	6.980	1 January 2100, 05:40	104.5		Subbasin_122	4.22	5.800	1 January 2100, 05:40	86.9
Subbasin_121	14.99	10.810	1 January 2100, 08:55	59.3		Subbasin_121	14.99	8.960	1 January 2100, 08:55	49.2
Reach_1011	245.04	94.510	2 January 2100, 02:25	43.3		Reach_1011	245.04	76.780	2 January 2100, 03:35	35.6
Junction_111	245.04	94.520	2 January 2100, 01:45	44.1		Junction_111	245.04	76.780	2 January 2100, 02:55	36.3
Subbasin_120	3.29	7.640	1 January 2100, 05:05	137.1		Subbasin_120	3.29	6.370	1 January 2100, 05:05	114.2
Subbasin_119	4.46	13.000	1 January 2100, 04:40	166.2		Subbasin_119	4.46	10.970	1 January 2100, 04:40	140.2
Reach_1010	237.30	88.310	2 January 2100, 01:50	40.5		Reach_1010	237.30	71.620	2 January 2100, 03:00	33.3
Junction_110	237.30	88.320	2 January 2100, 01:30	40.8		Junction_110	237.30	71.630	2 January 2100, 02:40	33.6

Basin Model

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

0.766

Saugeen_HMS_Calibrated Areal Reduction Factor:

		Hazel 75%	Hydraulic	Hazel 125%	Hydraulic	Hazel 75% V	Vetting Front	Hazel 125% V	Vetting Front	Hazel 75% I	nitial Water	Hazel 125%	Initial Wa
ydrologic Element	Drainage Area (km^2)	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in	Difference in Peak Flow	Difference in	Difference in Peak Flow	Differenc Volum
		(m ³ /s)	(mm)	(m ³ /s)	(mm)	(m ³ /s)	(mm)	(m ³ /s)	Volume (mm)	(m ³ /s)	Volume	(m ³ /s)	(mm)
Subbasin_129	24.80	3.3	15.4	-2.8	-13.0	1.1	5.0	-0.9	-4.3	-1.2	-5.6	1.4	
Subbasin_130	5.40	1.0	19.8	-1.0	-18.4	0.3	5.9	-0.3	-5.7	-0.4	-8.0	0.4	
Junction_116	30.30	4.3	16.2	-3.7	-14.0	1.4	5.1	-1.2	-4.6	-1.6	-6.0	1.9	
Subbasin_101	36.10	1.5	9.0	-1.5	-8.9	0.4	2.2	-0.4	-2.1	-0.8	-4.8	0.9	
Subbasin_102	12.70	2.5	21.3	-2.5	-20.9	0.7	5.8	-0.6	-5.6	-1.1	-9.5	1.2	
Junction_101	48.80	3.4	12.2	-3.4	-12.0	0.9	3.1	-0.9	-3.0	-1.6	-6.0	1.7	<u> </u>
Reach_1001	48.80	3.4	12.1 20.3	-3.4	-11.9	0.9	3.1 5.4	-0.9	-3.0	-1.6	-6.0 -8.8	1.7	
Subbasin_103 Subbasin 104	24.40	4.3	20.3	-4.2	-20.0	0.1	5.4	-1.1 -0.1	-5.2	-1.8	-8.8	0.2	
Junction_102	1.20 74.40	7.9	15.0	-0.3	-22.1	2.1	3.9	-0.1	-5.5 -3.8	-0.2	-12.5	3.9	<u> </u>
Reach_1002	74.40	8.0	13.0	-7.8	-14.7	2.1	3.9	-2.1	-3.7	-3.6	-7.0	3.9	<u> </u>
Subbasin_105	21.00	3.4	18.0	-3.2	-17.0	0.9	4.5	-0.8	-4.3	-1.8	-9.3	1.9	
Subbasin_106	18.30	2.8	19.1	-2.8	-18.7	0.7	5.0	-0.7	-4.8	-1.2	-8.0	1.2	
Junction_103	39.30	6.2	18.5	-5.9	-17.8	1.6	4.7	-1.5	-4.6	-2.9	-8.7	3.1	
Reach_1003	39.30	6.2	18.4	-5.9	-17.6	1.6	4.7	-1.5	-4.5	-2.9	-8.6	3.1	
Subbasin_107	20.70	4.0	21.6	-4.0	-21.2	1.1	5.8	-1.0	-5.6	-1.8	-9.5	1.9	
Subbasin_108	3.30	1.1	32.0	-1.1	-31.4	0.3	9.4	-0.3	-9.1	-0.4	-12.4	0.4	
Junction_104	137.70	17.6	17.2	-16.6	-16.7	3.8	4.5	-4.0	-4.3	-6.9	-7.9	7.8	
Reach_1004	137.70	16.8	16.5	-16.4	-16.0	4.2	4.3	-4.0	-4.2	-7.2	-7.5	7.9	
Subbasin_109	11.40	1.7	18.3	-1.7	-17.8	0.4	4.9	-0.4	-4.7	-0.8	-8.2	0.8	
Subbasin_110	9.50	1.6	18.7	-1.6	-18.3	0.4	5.1	-0.4	-5.0	-0.7	-8.7	0.8	
Junction_105	158.50	19.4	16.8	-18.6	-16.3	4.9	4.4	-4.6	-4.2	-8.2	-7.6	9.1	
Reach_1005	158.50	17.6	16.2	-16.4	-15.3	4.6	4.2	-4.3	-4.0	-7.7	-7.3	8.4	
Subbasin_111	25.60	2.0	11.9	-1.9	-11.4	0.5	3.2	-0.5	-3.1	-1.0	-5.9	1.1	
Subbasin_112	6.80	0.6	12.6	-0.6	-12.2	0.2	3.2	-0.1	-3.1	-0.3	-6.6	0.3	
Junction_106	190.90	19.9	15.5	-18.3	-14.7	5.2	4.0	-4.9	-3.9	-8.8	-7.1	9.7	
Reach_1006	190.90	19.8	15.4	-18.2	-14.5	5.1	4.0	-4.9	-3.8	-8.8	-7.0	9.6	
Subbasin_113	8.00	1.6	22.0	-1.6	-21.5	0.5	6.5	-0.5	-6.2	-0.6	-8.7	0.7	<u> </u>
Junction_107	198.90	20.4	15.6	-18.8	-14.8	5.3	4.1	-5.0	-3.9	-9.0	-7.1	9.9	<u> </u>
Reach_1007	198.90	20.3	15.5	-18.7	-14.7	5.3	4.1	-5.0	-3.9	-8.9	-7.0	9.8	L
Subbasin_114	17.00	3.2	22.1	-3.2	-21.6	0.9	5.9	-0.8	-5.7	-1.3	-9.0	1.4	L
Subbasin_115	1.40	0.3	23.7	-0.3	-21.7	0.1	7.1	-0.1	-6.6	-0.1	-10.2	0.2	
Junction_108	217.30	21.8	16.1	-19.8	-15.3	5.7	4.2	-5.4	-4.1	-9.5	-7.2	10.4	<u> </u>
Reach_1008	217.30	21.8	16.1 23.9	-19.8 -0.3	-15.3	5.7	4.2	-5.4	-4.1	-9.5 -0.1	-7.2	10.4	L
Subbasin_116	1.30	21.9	23.9	-0.3	-21.5	5.7	4.3	-0.1	-7.3	-0.1	-10.2	10.5	L
Junction_109	218.60	21.9	15.9	-19.9	-15.5	5.7	4.3	-5.4	-4.1	-9.5	-7.2	10.5	<u> </u>
Reach_1009 Subbasin_117	218.60 9.50	1.1	13.5	-13.8	-13.1	0.3	4.2	-0.3	-4.0	-9.5	-7.1	0.6	<u> </u>
Subbasin_118	9.20	2.4	25.3	-2.3	-24.4	0.5	7.5	-0.7	-7.2	-1.0	-10.7	1.1	<u> </u>
Junction_110	237.30	23.2	16.2	-20.7	-15.4	6.0	4.3	-5.7	-4.2	-10.0	-7.2	11.1	<u> </u>
Reach 1010	237.30	23.1	16.2	-20.7	-15.3	6.0	4.3	-5.7	-4.2	-10.0	-7.2	11.1	
Subbasin_119	4.50	1.0	23.0	-1.0	-20.6	0.3	7.4	-0.3	-6.8	-0.4	-8.8	0.4	
Subbasin_120	3.30	0.7	21.2	-0.7	-19.5	0.2	7.0	-0.2	-6.6	-0.4	-10.9	0.4	
Junction_111	245.00	23.7	16.4	-21.2	-15.5	6.2	4.4	-5.9	-4.2	-10.2	-7.3	11.3	
Reach_1011	245.00	23.7	16.3	-21.1	-15.4	6.2	4.4	-5.9	-4.2	-10.2	-7.2	11.3	
Subbasin_121	15.00	2.1	15.7	-1.9	-14.3	0.6	4.9	-0.6	-4.6	-0.8	-6.3	0.9	
Subbasin_122	4.20	0.9	22.4	-0.9	-19.5	0.3	7.4	-0.3	-6.5	-0.4	-8.5	0.4	
Junction_112	264.20	24.7	16.4	-21.7	-15.4	6.5	4.5	-6.2	-4.3	-10.6	-7.2	11.8	
Reach_1012	264.20	24.7	16.1	-21.7	-15.2	6.5	4.4	-6.2	-4.2	-10.6	-7.1	11.8	
Subbasin_123	9.50	2.2	22.6	-2.0	-19.8	0.7	7.5	-0.7	-6.8	-0.9	-8.8	1.0	
Subbasin_124	5.40	1.1	20.2	-1.0	-18.0	0.4	6.7	-0.3	-6.0	-0.4	-7.4	0.5	
Junction_113	279.20	25.7	16.4	-22.4	-15.4	6.9	4.5	-6.5	-4.3	-10.9	-7.2	12.2	
Reach_1013	279.20	25.7	16.4	-22.4	-15.3	6.9	4.5	-6.5	-4.3	-10.9	-7.1	12.2	
Subbasin_125	9.00	2.2	24.1	-2.1	-22.7	0.5	7.4	-0.6	-7.1	-0.9	-9.7	0.9	<u> </u>
Subbasin_126	7.70	2.1	24.1	-2.0	-25.7	0.6	7.7	-0.6	-7.4	-0.8	-10.9	0.9	<u> </u>
Junction_114	296.00	27.1	16.9	-23.5	-15.8	7.3	4.7	-6.8	-4.5	-11.4	-7.3	12.8	<u> </u>
Reach_1014	296.00	27.1	16.8	-23.5	-15.8	7.3	4.7	-0.8	-4.5	-11.4	-7.3	12.8	<u> </u>
Subbasin_127	11.40	27.1	10.8	-23.5	-13.7	0.6	4.7	-0.8	-4.5	-11.4	-7.3	12.8	<u> </u>
Subbasin_128	1.80	0.4	23.5	-2.0	-18.0	0.0	7.2	-0.0	-5.3	-0.3	-10.4	0.2	<u> </u>
Junction_115	309.20	27.9	16.9	-0.4	-21.1	7.5	4.7	-7.0	-0.5	-0.2	-10.4	13.1	<u> </u>
Reach_1015	309.20	27.9	16.8	-24.2	-15.8	7.5	4.7	-7.0	-4.5	-11.7	-7.3	13.1	<u> </u>
Subbasin_132	2.20	0.7	31.1	-24.2	-15.8	0.2	4.7	-7.0	-4.5	-11.7	-13.2	0.3	<u> </u>
geen Flow Gauge	311.40	28.1	16.9	-24.4	-15.9	7.5	4.7	-0.2	-8.5	-0.3	-13.2	13.2	<u> </u>
Reach_1016	30.30	4.3	16.9	-24.4	-13.9	1.4	4.7	-7.0	-4.5	-11.8	-7.5	13.2	<u> </u>
Subbasin_131	30.30	4.3	9.3	-3.7	-13.9	0.2	3.1	-1.2	-4.6	-1.6	-6.0	0.4	<u> </u>
Junction_117	344.80	28.1	9.5	-0.6	-15.6	8.6	4.7	-0.2	-2.0	-0.5	-4.2	12.9	<u> </u>
Reach_1017	344.80	28.0	16.8	-26.4	-15.6	8.6	4.7	-8.1	-4.5	-11.8	-7.2	12.9	<u> </u>
Subbasin_133		28.0	29.7	-20.4	-15.6	0.2	9.4	-0.1	-4.5	-11.8	-7.2	0.3	<u> </u>
Subbasin_133 Junction_118	2.60										-10.8		<u> </u>
Junction_118 Reach_1018	347.30	28.3 28.3	16.8	-26.7 -26.7	-15.7	8.7	4.8 4.8	-8.2	-4.5 -4.5	-11.9 -11.9	-7.2	12.9 12.9	⊢
	347.30		16.8		-15.7	8.6		-8.2			-7.2		<u> </u>
Subbasin_136	1.70	0.6	12.7	-0.6	-12.0	0.2	3.3	-0.1	-3.1	-0.2		0.3	<u> </u>
Subbasin_134	0.30	0.0	7.4	0.0	-6.3 -6.3	0.0	2.3	0.0	-2.1	0.0	-2.3	0.0	<u> </u>
Junction_119	0.30	0.0	7.4	0.0	-6.3 -6.3	0.0	2.3	0.0	-2.1	0.0	-2.3	0.0	<u> </u>
Reach_1019 Subbasin_135	0.30	0.0	16.7	-0.2	-6.8	0.0	3.3	0.0	-2.1	0.0	-2.4	0.0	<u> </u>
Junction_120	0.30	0.2	16.7	-0.2	-6.6	0.1	2.8	0.0	-1.9	0.0	-1.7	0.0	<u> </u>
Reach_1020	0.60	0.2	12.4	-0.2	-6.6	0.0	2.8	0.0	-2.0	0.0	-2.0	0.0	<u> </u>
Subbasin_137	0.60	0.2	12.4	-0.2	-6.6	0.0	2.8	0.0	-2.0	0.0	-2.0	0.0	<u> </u>
Subbasin_137 DutflowDurham	0.30	0.1	11.7	-0.1	-4.7	0.0	2.2	-0.1	-1.2	-0.1	-1.0	0.0	<u> </u>
Junction_121	349.90	28.7	12.2	-26.9	-15.6	8.7	4.8	-0.1	-1.7	-12.0	-1.7	13.1	<u> </u>
Reach_1021	349.90	28.2	16.6	-26.3	-15.6	8.6	4.8	-8.1	-4.5	-12.0	-7.2	13.1	<u> </u>
Subbasin_138	4.90	1.8	34.9	-20.5	-15.4	0.5	4.7	-0.1	-4.4	-11.7	-7.1	0.6	<u> </u>
	4.90	28.9	16.8	-1.7	-34.2	8.7	9.5	-0.4	-9.1	-0.8	-12.4	13.0	<u> </u>
Sink 1													
Sink-1	334.00	20.5	10.0	20.5	13.7	0.7	4.0	0.5	4.5	11.5	7.1	10.0	

Basin Model

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

0.766

Saugeen_HMS_Calibrated Areal Reduction Factor: Peak Flow and Runoff Volume Percent Change

Hydrologic Element Subbasin_129 Subbasin_130 Junction_116 Subbasin_101 Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105 Subbasin_106	Drainage Area (km^2) 24.80 5.40 30.30 36.10 12.70 48.80 48.80 24.40	Percent Difference in Peak Flow 8.8% 9.5% 9.0% 14.3% 13.2%	Volume 9.1% 10.0%	Percent Difference in Peak Flow -7.5%	Percent Difference in Volume	Percent Difference in Peak Flow	Percent Difference i Volume						
Subbasin_130 Junction_116 Subbasin_101 Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	24.80 5.40 30.30 36.10 12.70 48.80 48.80	Peak Flow 8.8% 9.5% 9.0% 14.3%	Volume 9.1% 10.0%	Peak Flow									
Subbasin_130 Junction_116 Subbasin_101 Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	5.40 30.30 36.10 12.70 48.80 48.80	8.8% 9.5% 9.0% 14.3%	9.1% 10.0%										
Subbasin_130 Junction_116 Subbasin_101 Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	5.40 30.30 36.10 12.70 48.80 48.80	9.5% 9.0% 14.3%	10.0%		-7.7%	2.9%	3.0%	-2.5%	-2.6%	-3.2%	-3.3%	3.8%	3.9
Subbasin_101 Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	36.10 12.70 48.80 48.80	14.3%		-9.0%	-9.3%	2.8%	3.0%	-2.8%	-2.9%	-3.9%	-4.1%	4.1%	4.3
Subbasin_102 Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	12.70 48.80 48.80		9.3%	-7.9%	-8.0%	2.9%	3.0%	-2.5%	-2.6%	-3.4%	-3.5%	3.9%	4.0
Junction_101 Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	48.80 48.80		14.5%	-14.1%	-14.3%	3.5%	3.5%	-3.3%	-3.4%	-7.6%	-7.7%	8.2%	8.3
Reach_1001 Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105	48.80		13.6%	-13.0%	-13.4%	3.5%	3.7%	-3.4%	-3.6%	-5.8%	-6.0%	6.2%	6.5
Subbasin_103 Subbasin_104 Junction_102 Reach_1002 Subbasin_105		13.6% 13.6%	14.1% 14.1%	-13.3%	-13.9% -13.8%	3.6%	3.6%	-3.4%	-3.5% -3.5%	-6.4% -6.5%	-6.9% -6.9%	6.9% 6.9%	7.5
Subbasin_104 Junction_102 Reach_1002 Subbasin_105	24.40	15.0%	14.1%	-13.5%	-15.8%	4.0%	4.1%	-3.3%	-3.5%	-6.5%	-6.7%	7.0%	7.3
Junction_102 Reach_1002 Subbasin_105	1.20	10.2%	10.6%	-9.5%	-10.0%	2.2%	2.5%	-2.2%	-2.4%	-5.5%	-5.7%	5.8%	6.2
Subbasin_105	74.40	14.3%	14.5%	-14.1%	-14.3%	3.8%	3.8%	-3.8%	-3.6%	-6.6%	-6.8%	7.0%	7.3
_	74.40	14.4%	14.6%	-14.0%	-14.3%	3.8%	3.8%	-3.7%	-3.7%	-6.5%	-6.8%	7.0%	7.3
Subbasin_106	21.00	10.4%	10.7%	-9.8%	-10.1%	2.6%	2.7%	-2.5%	-2.6%	-5.3%	-5.5%	5.9%	6.0
	18.30	16.4%	16.7%	-16.1%	-16.4%	4.3%	4.4%	-4.2%	-4.2%	-6.8%	-7.0%	7.3%	7.4
Junction_103	39.30	12.5%	13.0%	-12.0%	-12.4%	3.2%	3.3%	-3.1%	-3.2%	-5.9%	-6.1%	6.3%	6.0
Reach_1003 Subbasin_107	39.30 20.70	12.5% 14.6%	13.0% 15.1%	-12.0%	-12.4%	3.2%	3.3%	-3.1%	-3.2%	-5.9% -6.4%	-6.1% -6.6%	6.3% 6.8%	6.0
Subbasin_108	3.30	14.0%	11.9%	-14.5%	-14.8%	3.2%	4.0%	-3.0%	-3.4%	-0.4%	-4.6%	4.4%	4.8
Junction_104	137.70	13.4%	14.0%	-12.7%	-13.6%	2.9%	3.7%	-3.0%	-3.5%	-5.3%	-6.4%	5.9%	6.
Reach_1004	137.70	13.2%	14.1%	-12.9%	-13.6%	3.3%	3.7%	-3.2%	-3.5%	-5.7%	-6.4%	6.2%	6.
Subbasin_109	11.40	15.4%	15.7%	-15.2%	-15.3%	4.1%	4.2%	-4.0%	-4.0%	-7.0%	-7.1%	7.3%	7.
Subbasin_110	9.50	11.8%	12.1%	-11.5%	-11.9%	3.2%	3.3%	-3.1%	-3.2%	-5.4%	-5.6%	5.7%	5.9
Junction_105	158.50	13.3%	14.0%	-12.8%	-13.6%	3.3%	3.7%	-3.2%	-3.6%	-5.6%	-6.4%	6.2%	6.
Reach_1005	158.50	14.7%	14.8%	-13.7%	-14.0%	3.8%	3.8%	-3.6%	-3.7%	-6.5%	-6.6%	7.1%	7.
Subbasin_111 Subbasin_112	25.60	11.7% 12.0%	11.9% 12.2%	-11.2%	-11.4%	3.2%	3.2%	-3.0%	-3.1%	-5.7% -6.4%	-5.8% -6.4%	6.2% 6.8%	6. 6.
Junction 106	6.80 190.90	12.0%	12.2%	-11.8%	-11.9%	3.1%	3.1%	-2.9%	-3.0%	-6.4%	-6.5%	7.0%	7.
Reach_1006	190.90	14.4%	14.3%	-13.2%	-13.6%	3.7%	3.7%	-3.5%	-3.6%	-6.4%	-6.6%	7.0%	7.
Subbasin_113	8.00	13.3%	13.7%	-13.1%	-13.4%	3.8%	4.0%	-3.8%	-3.9%	-5.2%	-5.4%	5.6%	5.
Junction_107	198.90	14.3%	14.4%	-13.2%	-13.6%	3.7%	3.8%	-3.5%	-3.6%	-6.3%	-6.5%	6.9%	7.
Reach_1007	198.90	14.3%	14.4%	-13.2%	-13.6%	3.7%	3.8%	-3.5%	-3.6%	-6.3%	-6.5%	6.9%	7.
Subbasin_114	17.00	17.5%	18.0%	-17.3%	-17.6%	4.7%	4.8%	-4.5%	-4.7%	-7.1%	-7.3%	7.4%	7.
Subbasin_115	1.40	7.6%	8.3%	-7.1%	-7.6%	2.3%	2.5%	-2.3%	-2.3%	-3.4%	-3.6%	3.4%	4.
Junction_108	217.30	14.4%	14.6%	-13.1%	-13.9%	3.8%	3.8%	-3.6%	-3.7%	-6.3%	-6.5%	6.9%	7.
Reach_1008 Subbasin_116	217.30	14.4% 6.0%	14.6% 6.7%	-13.1%	-13.9% -6.1%	3.7%	3.8%	-3.6%	-3.7%	-6.3% -2.5%	-6.5% -2.9%	6.9% 2.9%	7.
Junction_109	218.60	14.3%	14.4%	-13.0%	-13.7%	3.7%	3.8%	-1.7%	-2.0%	-6.2%	-2.5%	6.9%	7.
Reach_1009	218.60	14.3%	14.5%	-13.0%	-13.8%	3.7%	3.8%	-3.5%	-3.7%	-6.2%	-6.5%	6.9%	7.
Subbasin_117	9.50	8.7%	9.0%	-7.3%	-7.5%	2.5%	2.6%	-2.4%	-2.5%	-3.8%	-4.0%	4.6%	4.
Subbasin_118	9.20	8.5%	9.2%	-8.3%	-8.9%	2.5%	2.7%	-2.4%	-2.6%	-3.6%	-3.9%	3.8%	4.
Junction_110	237.30	13.9%	13.7%	-12.4%	-13.0%	3.6%	3.7%	-3.4%	-3.5%	-6.0%	-6.1%	6.6%	6.
Reach_1010	237.30	13.9%	13.7%	-12.4%	-13.0%	3.6%	3.7%	-3.4%	-3.5%	-6.0%	-6.1%	6.6%	6.
Subbasin_119	4.50	5.2%	6.0%	-4.9%	-5.4%	1.7%	1.9%	-1.6%	-1.8%	-2.1%	-2.3%	2.2%	2.
Subbasin_120	3.30	5.3%	6.1% 13.0%	-5.0%	-5.6%	1.7%	2.0%	-1.6%	-1.9%	-2.7% -5.8%	-3.1%	3.1%	3.
Junction_111 Reach_1011	245.00 245.00	13.4% 13.4%	13.0%	-12.0%	-12.3%	3.5%	3.5%	-3.3%	-3.4%	-5.8%	-5.8% -5.8%	6.4% 6.4%	6. 6.
Subbasin_121	15.00	9.4%	9.6%	-12.0%	-12.5%	2.9%	3.0%	-3.3%	-3.4%	-3.8%	-3.8%	4.1%	4.
Subbasin_122	4.20	7.4%	8.1%	-6.6%	-7.0%	2.3%	2.7%	-2.2%	-2.4%	-2.8%	-3.1%	3.3%	3.
Junction_112	264.20	13.1%	12.6%	-11.5%	-11.9%	3.5%	3.4%	-3.3%	-3.3%	-5.6%	-5.6%	6.2%	6.
Reach_1012	264.20	13.1%	12.7%	-11.5%	-11.9%	3.5%	3.5%	-3.3%	-3.3%	-5.6%	-5.6%	6.2%	6.
Subbasin_123	9.50	6.8%	7.4%	-6.1%	-6.5%	2.2%	2.5%	-2.1%	-2.2%	-2.6%	-2.9%	3.0%	3.
Subbasin_124	5.40	8.3%	8.9%	-7.6%	-7.9%	2.7%	2.9%	-2.6%	-2.7%	-3.1%	-3.3%	3.5%	3.
Junction_113	279.20	12.7%	12.2%	-11.1%	-11.4%	3.4%	3.4%	-3.2%	-3.2%	-5.4%	-5.3%	6.0%	5.
Reach_1013	279.20	12.7%	12.2%	-11.1%	-11.4%	3.4%	3.4%	-3.2%	-3.2%	-5.4%	-5.3%	6.0%	5.
Subbasin_125	9.00	8.7%	9.3%	-8.2%	-8.8%	2.7%	2.9%	-2.5%	-2.8%	-3.5%	-3.7%	3.7%	3.
Subbasin_126	7.70	11.3%	12.0%	-11.0%	-11.7%	3.3%	3.5%	-3.2%	-3.4%	-4.6%	-5.0%	4.9%	5.
Junction_114	296.00	12.5%	12.0%	-10.9%	-11.3%	3.4%	3.4%	-3.1%	-3.2%	-5.3%	-5.2%	5.9%	5.
Reach_1014	296.00	12.5%	12.0%	-10.9%	-11.3%	3.4%	3.4%	-3.1%	-3.2%	-5.3%	-5.2%	5.9%	5.
Subbasin_127	11.40	10.8%	11.2% 5.8%	-10.4%	-10.7%	3.1%	3.2%	-3.0%	-3.1%	-4.7% -2.2%	-4.9%	5.0%	5.
Subbasin_128 Junction_115	1.80 309.20	4.9%	5.8%	-4.6%	-5.2%	1.6%	1.8%	-1.4%	-1.7%	-2.2%	-2.6%	2.4%	2.
Reach_1015	309.20	12.4%	11.9%	-10.8%	-11.2%	3.3%	3.3%	-3.1%	-3.2%	-5.2%	-5.2%	5.8%	5.
Subbasin_132	2.20	6.6%	7.6%	-10.8%	-11.2%	1.9%	2.1%	-3.1%	-3.2%	-3.2%	-3.2%	3.0%	3.
augeen Flow Gauge	311.40	12.3%	11.8%	-10.7%	-11.1%	3.3%	3.3%	-3.1%	-3.2%	-5.2%	-5.1%	5.8%	5.
Reach_1016	30.30	9.0%	9.3%	-7.9%	-8.0%	2.9%	3.0%	-2.5%	-2.6%	-3.4%	-3.5%	3.9%	4.
Subbasin_131	3.10	3.9%	8.0%	-3.8%	-6.6%	1.2%	2.7%	-1.2%	-2.2%	-1.9%	-3.6%	2.1%	4.
Junction_117	344.80	10.3%	11.5%	-9.7%	-10.7%	3.1%	3.3%	-3.0%	-3.1%	-4.3%	-4.9%	4.7%	5.
Reach_1017	344.80	10.3%	11.5%	-9.7%	-10.7%	3.1%	3.3%	-3.0%	-3.1%	-4.3%	-4.9%	4.7%	5.
Subbasin_133	2.60	8.0%	8.9%	-7.9%	-8.7%	2.4%	2.8%	-2.4%	-2.7%	-2.9%	-3.2%	3.0%	3.
Junction_118	347.30	10.2%	11.5%	-9.7%	-10.7%	3.1%	3.3%	-3.0%	-3.1%	-4.3%	-4.9%	4.7%	5.
Reach_1018	347.30	10.2%	11.5%	-9.7%	-10.7%	3.1%	3.3%	-3.0%	-3.1%	-4.3%	-4.9%	4.7%	5.
Subbasin_136	1.70	8.5%	11.8%	-8.6%	-11.1%	2.0%	3.0%	-2.0%	-2.9%	-3.0%	-4.6%	3.3%	5.
Subbasin_134	0.30	1.7%	3.6%	-2.2%	-3.1%	0.4%	1.1%	-0.9%	-1.0%	-0.9%	-1.1%	0.4%	1
Junction_119	0.30	1.7%	3.6%	-2.2%	-3.1%	0.4%	1.1%	-0.9%	-1.0%	-0.9%	-1.1%	0.4%	1
Reach_1019	0.30	1.7%	3.6%	-1.7%	-3.1%	0.4%	1.1%	-0.4%	-1.0%	-0.4%	-1.1%	0.4%	1
Subbasin_135 Junction_120	0.30	6.0% 4.5%	10.8%	-4.8%	-4.4%	1.6%	2.1%	-1.0%	-1.2%	-1.0%	-1.1%	1.3%	1
Reach_1020	0.60	4.5%	7.0%	-4.5%	-3.7%	0.9%	1.6%	-1.1%	-1.1%	-0.9%	-1.1%	0.9%	1
Subbasin_137	0.80	4.5%	6.1%	-4.5%	-3.7%	0.9%	1.0%	-1.1%	-1.1%	-1.1%	-1.1%	0.9%	1
OutflowDurham	0.90	4.7%	6.7%	-4.2%	-3.3%	1.2%	1.4%	-0.8%	-0.9%	-0.8%	-0.9%	1.1%	1
Junction_121	349.90	10.3%	11.5%	-9.7%	-10.7%	3.1%	3.3%	-3.0%	-3.1%	-4.3%	-4.9%	4.7%	5
Reach_1021	349.90	10.3%	11.5%	-9.6%	-10.7%	3.1%	3.3%	-2.9%	-3.1%	-4.3%	-4.9%	4.6%	5
Subbasin_138	4.90	7.5%	8.7%	-7.3%	-8.5%	1.9%	2.4%	-1.9%	-2.3%	-2.5%	-3.1%	2.7%	3
Sink-1	354.80	10.2%	11.4%	-9.5%	-10.6%	3.1%	3.2%	-2.9%	-3.1%	-4.2%	-4.9%	4.6%	5
-	Maximum	17.5%	18.0%	-1.7%	-2.4%	4.7%	4.8%	-0.4%	-0.6%	-0.4%	-0.5%	8.2%	8

Basin Model

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

0.766

Saugeen_HMS_Calibrated Areal Reduction Factor:

		Hazel 759	% Percent	Hazel 125	% Percent	Hazel 75%	6 Lag Time	Hazel 125%	6 Lag Time	Hazel 75% C	hannel Slope	Hazel 125% C	hannel Slo
ydrologic Element	Drainage Area (km^2)	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in	Difference in Peak Flow	Difference in Volume	Difference in Peak Flow	Difference in	Difference in Peak Flow	Difference Volume
		(m ³ /s)	(mm)	(m³/s)	(mm)	(m ³ /s)	Volume	(m ³ /s)	(mm)	(m ³ /s)	Volume	(m ³ /s)	(mm)
Subbasin_129	24.80	-0.2	-1.0	0.1	1.0	11.1	31.6	-7.0	-20.3	0.0		0.0	-
Subbasin_130 Junction_116	5.40 30.30	-0.2	-1.0	0.0	1.0	3.0 14.0	38.8 32.9	-2.0	-25.4	0.0	0.0	0.0	-
Subbasin_101	36.10	-0.1	-0.5	0.1	0.4	3.5	11.3	-2.1	-9.8	0.0		0.0	
Subbasin_102	12.70	-0.1	-1.0	0.1	1.0	5.6	31.1	-3.6	-19.7	0.0	0.1	0.0	
Junction_101	48.80	-0.1	-0.6	0.1	0.6	7.9	16.4	-4.9	-12.4	0.0	0.0	0.0	
Reach_1001	48.80	-0.1	-0.6	0.1	0.6	7.8	16.4	-4.9	-12.3	-0.1	-0.4	0.0	
Subbasin_103	24.40	-0.1	-0.9	0.1	0.9	8.8	25.4	-5.4	-15.9	0.0	0.0	0.0	
Subbasin_104 Junction_102	1.20 74.40	0.0	-0.7	0.0	0.7	0.7	43.1 19.8	-0.5 -10.6	-28.9 -13.8	0.0	-0.1	0.0	
Reach_1002	74.40	-0.3	-0.7	0.3	0.7	16.7	19.6	-10.0	-13.6	-0.3	-0.3	0.1	
Subbasin_105	21.00	-0.1	-1.1	0.1	1.1	9.7	32.7	-6.2	-20.9	0.0	0.1	0.0	
Subbasin_106	18.30	-0.1	-1.1	0.1	1.1	5.4	20.8	-3.3	-13.2	0.0	-0.1	0.0	
Junction_103	39.30	-0.3	-1.1	0.3	1.1	15.0	27.1	-9.4	-17.3	0.0		0.0	
Reach_1003	39.30	-0.3	-1.1	0.3	1.1	14.9	26.9	-9.4	-17.1	0.0	-0.1	0.0	
Subbasin_107	20.70 3.30	-0.2	-1.2	0.2	1.1	8.3	28.2 47.8	-5.2	-17.7	0.0		0.0	
Subbasin_108 Junction_104	3.30	-0.6	-1.0	0.0	0.9	2.3	23.6	-1.6 -22.7	-34.3	-3.7	-0.4	2.2	
Reach_1004	137.70	-0.6	-0.9	0.6	0.5	30.2	22.7	-21.0	-15.0	-5.0		3.6	
Subbasin_109	11.40	-0.1	-1.5	0.1	1.5	3.4	21.3	-2.1	-13.4	0.0	0.0	0.0	
Subbasin_110	9.50	-0.1	-1.4	0.1	1.4	4.0	29.9	-2.5	-18.9	0.0		0.0	
Junction_105	158.50	-0.8	-0.9	0.8	0.9	32.8	23.1	-22.9	-15.1	-6.3	-0.8	5.2	
Reach_1005	158.50	-0.7	-0.9	0.8	0.9	21.2	22.3	-15.4	-14.0	-15.9	-2.9	5.5	
Subbasin_111	25.60	-0.1	-0.6	0.1	0.6	5.5	16.2	-3.4	-10.4	0.0		0.0	
Subbasin_112	6.80	0.0	-1.0	0.0	0.9	1.6 24.4	16.9 21.3	-1.0	-10.8	0.0	0.0	0.0	
Junction_106 Reach 1006	190.90 190.90	-0.8	-0.9	0.9	0.9	24.4	21.3	-18.0 -17.9	-13.4	-16.7 -16.8	-2.4	6.2	
Subbasin_113	8.00	-0.8	-0.9	0.8	1.6	24.2	31.6	-17.9	-13.3	0.0	-2.7	0.2	
Junction_107	198.90	-0.8	-0.9	0.9	0.9	25.3	21.5	-18.5	-13.6	-16.9	-2.6	6.2	
Reach_1007	198.90	-0.8	-0.9	0.9	0.9	25.0	21.3	-18.3	-13.5	-17.2	-2.8	6.2	
Subbasin_114	17.00	-0.1	-1.0	0.1	1.0	5.7	23.8	-3.6	-14.8	0.0	0.1	0.0	
Subbasin_115	1.40	0.0	-1.5	0.0	1.5	0.9	49.2	-0.7	-35.6	0.0	0.0	0.0	
Junction_108	217.30	-0.9	-0.9	0.9	0.9	25.9	21.7	-17.9	-13.7	-18.3	-2.5	7.1	
Reach_1008 Subbasin_116	217.30 1.30	-0.9	-0.9 -1.5	0.9	0.9	25.8 1.0	21.7 53.6	-17.9	-13.7 -39.4	-18.3	-2.5	7.1	
Junction_109	218.60	-0.9	-0.9	0.0	0.9	26.1	21.9	-18.1	-13.9	-18.3	-2.5	7.1	
Reach_1009	218.60	-0.9	-0.9	0.9	0.9	26.1	21.6	-18.1	-13.6	-18.3	-2.8	7.1	
Subbasin_117	9.50	0.0	-0.9	0.0	0.9	4.0	29.8	-2.5	-19.0	0.0	0.0	0.0	
Subbasin_118	9.20	-0.1	-1.7	0.1	1.7	6.2	47.9	-4.5	-34.5	0.0	0.0	0.0	
Junction_110	237.30	-1.0	-0.9	1.0	0.9	28.2	22.9	-18.9	-14.7	-19.1	-2.6	7.8	
Reach_1010	237.30	-1.0	-0.9	1.0	0.9	28.2	22.8	-18.9	-14.6	-19.1	-2.7	7.8	
Subbasin_119	4.50 3.30	-0.1	-4.5	0.1	4.5	3.4	54.3 52.9	-2.5	-39.8 -39.9	0.0	0.0	0.0	
Subbasin_120 Junction_111	245.00	-1.0	-0.7	1.1	1.0	30.0	23.8	-1.8	-59.9	-19.2	-2.6	8.0	
Reach_1011	245.00	-1.0	-1.0	1.1	1.0	30.0	23.7	-20.2	-15.3	-19.2	-2.7	8.0	
Subbasin_121	15.00	-0.1	-0.9	0.1	0.9	6.6	30.9	-4.1	-19.8	0.0	-0.1	0.0	
Subbasin_122	4.20	0.0	-1.5	0.0	1.5	2.9	49.1	-2.1	-35.0	0.0	0.0	0.0	
Junction_112	264.20	-1.1	-1.0	1.1	1.0	32.7	24.5	-19.7	-15.9	-19.4	-2.5	8.9	
Reach_1012	264.20	-1.0	-1.0	1.1	1.0	32.7	24.1	-19.7	-15.7	-19.4	-2.8	8.9	
Subbasin_123	9.50	-0.1	-2.2	0.1	2.2	6.7	50.2	-5.0	-36.8	0.0	0.1	0.0	
Subbasin_124	5.40	0.0	-1.1	0.0	1.1	3.4	43.7	-2.3	-29.4	0.0	-0.1	0.0	
Junction_113	279.20	-1.1	-1.0	1.2	1.0	35.6	25.4	-21.6	-16.6	-19.6	-2.6	9.2	
Reach_1013	279.20	-1.1	-1.0	1.1	1.0	35.6	25.3	-21.6	-16.6	-19.6	-2.7	9.2	
Subbasin_125	9.00	-0.1	-1.5 -0.8	0.1	1.5	6.0	47.2 43.0	-4.3	-33.3 -29.0	0.0		0.0	
Subbasin_126 Junction_114	7.70 296.00	-1.2	-0.8	0.0	0.8	4.7	43.0	-3.2	-29.0	-19.9	-2.6	9.4	
Reach_1014	296.00	-1.2	-1.0	1.2	1.0	38.7	26.4	-23.6	-17.4	-19.9	-2.0	9.4	
Subbasin_127	11.40	-1.2	-1.0	0.1	0.7	5.5	34.0	-23.0	-22.0	0.0	-0.1	0.0	
Subbasin_128	1.80	0.0	-2.3	0.0	2.3	1.4	55.5	-1.1	-41.2	0.0		0.0	
Junction_115	309.20	-1.2	-1.0	1.2	1.0	42.4	26.7	-24.9	-17.6	-10.9	-2.6	9.6	
Reach_1015	309.20	-1.2	-1.0	1.2	1.0	41.7	26.6	-24.9	-17.5	-11.3	-2.7	9.6	
Subbasin_132	2.20	0.0	-2.7	0.0	2.7	1.7	55.0	-1.3	-42.1	0.0	0.1	0.0	
geen Flow Gauge	311.40	-1.2	-1.0	1.2	1.0	42.9	26.8	-25.2	-17.6	-10.7	-2.7	9.6	
Reach_1016	30.30	-0.2	-1.0	0.2	1.0	14.0	32.6	-8.9	-21.0	0.0	-0.2	0.0	
Subbasin_131	3.10	0.0	-0.8	0.0	0.8	2.4	0.0	-1.9	0.0	0.0		0.0	
Junction_117	344.80	-2.1	-1.0	2.0	1.0	60.7	27.0	-39.6	-17.8	-7.3	-2.5	6.0	
Reach_1017	344.80	-2.1	-1.0	2.0	1.0	60.5	27.0	-39.6	-17.8	-7.3	-2.5	6.1	
Subbasin_133 Junction_118	2.60 347.30	-0.1	-3.4	0.1	3.4	1.9 61.2	52.8 27.2	-1.4 -39.9	-37.6	0.0 -7.3	0.2	0.0	
Reach_1018	347.30	-2.1	-1.0	2.1	1.0	61.2	27.2	-39.9 -39.8	-17.9	-7.3	-2.5	6.2	
Subbasin_136	1.70	-2.1	-1.0	0.2	8.1	1.3	0.1	-39.8	-17.9	-7.3	-2.5	0.0	
Subbasin_134	0.30	-0.2	-12.7	0.2	12.7	0.3	0.0	-1.0	0.0	0.0		0.0	
Junction_119	0.30	0.0	-12.7	0.0	12.7	0.3	0.0	-0.2	0.0	0.0		0.0	
Reach_1019	0.30	0.0	-12.7	0.0	12.7	0.3	-0.1	-0.2	0.0	0.0		0.0	
Subbasin_135	0.30	-0.1	-20.8	0.1	20.9	0.3	-0.1	-0.2	-0.1	0.0		0.0	
Junction_120	0.60	-0.1	-17.1	0.1	17.1	0.4	-0.1	-0.3	0.0	0.0		0.0	
Reach_1020	0.60	-0.1	-17.1	0.1	17.1	0.4	-0.1	-0.3	0.0	0.0		0.0	
Subbasin_137	0.30	-0.2	-30.0	0.2	30.0	0.2	0.1	-0.2	0.1	0.0		0.0	
DutflowDurham	0.90	-0.3	-21.3	0.3	21.3	0.5	0.0	-0.4	0.0	0.0		0.0	
Junction_121 Reach_1021	349.90 349.90	-2.2	-1.1	2.1	1.1	61.0 56.1	26.9 26.5	-39.6 -38.9	-17.7	-7.6	-2.5	6.5 7.3	
Subbasin_138	349.90 4.90	-2.1	-1.1	2.1	7.6	4.2	26.5	-38.9	-17.5	-9.5		7.3	
Sink-1	354.80	-2.2	-1.2	2.1	1.2	57.5	27.0	-39.9	-17.8	-9.6		7.4	
	Maximum	0.0	-0.5	2.1	30.0	61.2	60.2	-0.2	0.1	0.0	0.2		

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

4

0.766

Basin Model

Saugeen_HMS_Calibrated

WILLS

Areal Reduction Factor:

		Hazol 75	% Percent	Hazol 125	% Percent	Hazal 75%	6 Lag Time	Hazel 1259	(Lag Timo	Hazel 75%	ChanSlong	Hazel 125%	ChanSlor
Hydrologic	Drainage	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percen
Element	Area (km^2)	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference in	Difference
		Peak Flow	Volume	Peak Flow	Volume	Peak Flow	Volume	Peak Flow	Volume	Peak Flow	Volume	Peak Flow	Volume
ubbasin_129 ubbasin_130	24.80 5.40	-0.4%	-0.6% -0.5%	0.4%	0.6%	29.8% 27.9%	18.8% 19.6%	-18.9% -18.2%	-12.0%	-0.1%	-0.1%	-0.1%	-0 0
unction_116	30.30	-0.4%	-0.5%	0.3%	0.5%	27.9%	19.6%	-18.2%	-12.8%	-0.1%	0.0%	-0.1%	0
ubbasin_101	36.10	-0.6%	-0.7%	0.7%	0.7%	33.1%	18.0%	-19.8%	-15.7%	0.0%	0.0%	0.0%	0
ubbasin_102	12.70	-0.4%	-0.6%	0.4%	0.6%	29.8%	19.9%	-18.8%	-12.6%	0.1%	0.0%	0.1%	(
unction_101	48.80	-0.5%	-0.7%	0.6%	0.7%	31.2%	18.9%	-19.2%	-14.2%	0.0%	0.0%	0.0%	(
each_1001	48.80	-0.5%	-0.7%	0.6%	0.7%	31.0%	19.1%	-19.2%	-14.3%	-0.3%	-0.4%	0.0%	
ubbasin_103 ubbasin_104	24.40	-0.5%	-0.7%	0.5%	0.7%	30.8% 26.3%	19.2% 19.6%	-19.1%	-12.1%	0.0%	0.0%	0.0%	
unction_102	1.20 74.40	-0.6%	-0.3%	0.4%	0.3%	30.3%	19.8%	-17.5%	-13.1%	-0.6%	-0.2%	0.0%	
each_1002	74.40	-0.6%	-0.7%	0.5%	0.7%	30.2%	19.5%	-18.9%	-13.5%	-0.8%	-0.7%	0.3%	
bbasin_105	21.00	-0.4%	-0.7%	0.5%	0.7%	29.5%	19.4%	-18.7%	-12.4%	0.1%	0.1%	0.1%	
bbasin_106	18.30	-0.7%	-0.9%	0.7%	0.9%	31.4%	18.2%	-19.3%	-11.5%	0.0%	-0.1%	0.0%	-
inction_103	39.30	-0.5%	-0.8%	0.5%	0.8%	30.2%	19.0%	-19.0%	-12.1%	0.0%	0.0%	0.0%	
each_1003	39.30	-0.5%	-0.8%	0.5%	0.8%	30.1%	18.9%	-18.9%	-12.1%	-0.1%	-0.1%	0.0%	
bbasin_107	20.70 3.30	-0.6% -0.2%	-0.8%	0.5%	0.8%	30.3% 21.9%	19.7% 17.7%	-19.0% -15.7%	-12.4%	0.0%	0.0%	0.0%	
bbasin_108 Inction_104	3.30	-0.2%	-0.4%	0.3%	0.4%	21.9%	17.7%	-13.7%	-12.7%	-2.8%	-0.3%	1.6%	
each_1004	137.70	-0.5%	-0.7%	0.5%	0.7%	23.8%	19.4%	-16.5%	-12.8%	-4.0%	-0.8%	2.9%	
bbasin_109	11.40	-0.9%	-1.3%	0.9%	1.3%	31.4%	18.3%	-19.4%	-11.5%	0.0%	0.0%	0.0%	
bbasin_110	9.50	-0.7%	-0.9%	0.6%	0.9%	30.0%	19.3%	-18.9%	-12.2%	0.0%	0.1%	0.0%	
inction_105	158.50	-0.5%	-0.8%	0.5%	0.8%	22.5%	19.3%	-15.7%	-12.7%	-4.3%	-0.7%	3.6%	
each_1005	158.50	-0.6%	-0.8%	0.6%	0.8%	17.7%	20.3%	-12.9%	-12.8%	-13.3%	-2.7%	4.6%	
bbasin_111	25.60	-0.4%	-0.6%	0.5%	0.6%	32.4%	16.1%	-19.6%	-10.4%	0.1%	0.0%	0.1%	
bbasin_112 Inction_106	6.80 190.90	-0.8% -0.6%	-0.9% -0.8%	0.6%	0.9%	32.1% 17.6%	16.4% 19.7%	-19.7%	-10.5%	0.0%	0.0%	0.0%	
each_1006	190.90	-0.6%	-0.8%	0.6%	0.8%	17.6%	19.7%	-13.0%	-12.4%	-12.0%	-2.2%	4.4%	
bbasin_113	8.00	-0.0%	-0.8%	0.7%	1.0%	29.4%	19.7%	-12.3%	-12.5%	-12.2%	-2.3%	-0.1%	
nction_107	198.90	-0.6%	-0.8%	0.6%	0.8%	17.8%	19.7%	-13.0%	-12.5%	-11.9%	-2.4%	4.4%	
each_1007	198.90	-0.6%	-0.8%	0.6%	0.8%	17.6%	19.7%	-12.9%	-12.5%	-12.1%	-2.6%	4.4%	
bbasin_114	17.00	-0.6%	-0.8%	0.5%	0.8%	31.0%	19.4%	-19.2%	-12.1%	0.1%	0.1%	0.1%	
bbasin_115	1.40	-0.5%	-0.5%	0.2%	0.5%	21.6%	17.2%	-15.9%	-12.5%	0.0%	0.0%	0.0%	
nction_108	217.30	-0.6%	-0.8%	0.6%	0.8%	17.1%	19.6%	-11.9%	-12.4%	-12.1%	-2.3%	4.7%	
each_1008 bbasin_116	217.30	-0.6% -0.2%	-0.8% -0.4%	0.6%	0.8%	17.1% 18.5%	19.7% 15.1%	-11.9%	-12.4%	-12.1%	-2.3%	4.7%	
nction_109	218.60	-0.2%	-0.4%	0.4%	0.4%	18.5%	19.6%	-13.3%	-11.1%	-12.0%	-2.3%	4.6%	
each_1009	218.60	-0.6%	-0.8%	0.6%	0.8%	17.1%	19.6%	-11.9%	-12.4%	-12.0%	-2.6%	4.7%	
bbasin_117	9.50	-0.3%	-0.6%	0.4%	0.5%	30.3%	18.5%	-19.0%	-11.8%	0.1%	0.0%	0.1%	
bbasin_118	9.20	-0.4%	-0.6%	0.4%	0.6%	22.2%	17.5%	-16.1%	-12.6%	0.0%	0.0%	0.0%	
inction_110	237.30	-0.6%	-0.8%	0.6%	0.8%	16.9%	19.4%	-11.3%	-12.4%	-11.4%	-2.2%	4.7%	
each_1010	237.30	-0.6%	-0.8%	0.6%	0.8%	16.9%	19.4%	-11.3%	-12.4%	-11.4%	-2.3%	4.7%	
bbasin_119	4.50	-0.7% -0.1%	-1.2%	0.7%	1.2%	17.3% 18.6%	14.2% 15.2%	-12.6%	-10.4%	0.0%	0.0%	0.0%	
bbasin_120 Inction_111	3.30 245.00	-0.1%	-0.2%	0.2%	0.2%	16.9%	13.2%	-14.0%	-11.4%	-10.9%	-2.0%	4.5%	
each_1011	245.00	-0.6%	-0.8%	0.6%	0.8%	16.9%	19.0%	-11.4%	-12.3%	-10.9%	-2.2%	4.5%	
bbasin_121	15.00	-0.3%	-0.5%	0.4%	0.5%	29.9%	19.0%	-18.9%	-12.2%	0.0%	-0.1%	0.0%	-
bbasin_122	4.20	-0.3%	-0.6%	0.3%	0.6%	22.7%	17.7%	-16.2%	-12.6%	0.0%	0.0%	0.0%	
inction_112	264.20	-0.6%	-0.8%	0.6%	0.8%	17.4%	18.9%	-10.4%	-12.3%	-10.3%	-1.9%	4.7%	
each_1012	264.20	-0.6%	-0.8%	0.6%	0.8%	17.4%	19.0%	-10.4%	-12.3%	-10.3%	-2.2%	4.7%	
bbasin_123	9.50	-0.4%	-0.7%	0.4%	0.7%	20.9%	16.6%	-15.4%	-12.1%	0.0%	0.0%	0.0%	
bbasin_124	5.40	-0.3%	-0.5%	0.3%	0.5%	26.3%	19.2%	-17.7%	-12.9%	-0.1%	-0.1%	-0.1%	-
inction_113	279.20	-0.5%	-0.8%	0.6%	0.8%	17.6%	18.8%	-10.7%	-12.3%	-9.7%	-1.9%	4.5%	
each_1013	279.20	-0.5%	-0.8%	0.6%	0.8%	17.6%	18.9%	-10.7%	-12.3%	-9.7%	-2.0%	4.5%	
bbasin_125	9.00	-0.4%	-0.6%	0.4%	0.6%	23.5%	18.2%	-16.6%	-12.8%	0.0%	0.0%	0.0%	
bbasin_126 Inction_114	7.70 296.00	-0.2%	-0.4%	0.2%	0.4%	26.0% 17.9%	19.6% 18.8%	-17.5% -10.9%	-13.2%	0.0%	0.0%	0.0%	
each_1014	296.00	-0.5%	-0.7%	0.6%	0.7%	17.9%	18.8%	-10.9%	-12.4%	-9.2%	-1.8%	4.4%	
bbasin_127	11.40	-0.3%	-0.7%	0.3%	0.7%	29.0%	19.6%	-10.3%	-12.4%	-9.2%	-0.1%	-0.1%	
bbasin_127	1.80	-0.2%	-0.6%	0.3%	0.6%	16.4%	13.7%	-12.1%	-10.2%	0.1%	0.1%	0.1%	
inction_115	309.20	-0.5%	-0.7%	0.5%	0.7%	18.9%	18.8%	-11.1%	-12.4%	-4.8%	-1.8%	4.3%	
each_1015	309.20	-0.5%	-0.7%	0.5%	0.7%	18.6%	18.8%	-11.1%	-12.4%	-5.0%	-1.9%	4.3%	
bbasin_132	2.20	-0.4%	-0.7%	0.4%	0.7%	15.7%	13.5%	-12.0%	-10.3%	0.0%	0.0%	0.0%	
en Flow Gau	311.40	-0.5%	-0.7%	0.5%	0.7%	18.8%	18.7%	-11.1%	-12.3%	-4.7%	-1.9%	4.2%	
each_1016	30.30	-0.4%	-0.6%	0.4%	0.6%	29.5%	18.9%	-18.7%	-12.2%	0.0%	-0.1%	0.0%	
bbasin_131	3.10	-0.2%	-0.7%	0.1%	0.7%	14.3%	0.0%	-11.1%	0.0%	0.0%	0.0%	0.0%	
nction_117	344.80	-0.8%	-0.7%	0.8%	0.7%	22.2%	18.6%	-14.5%	-12.2%	-2.7%	-1.7%	2.2%	
each_1017	344.80	-0.8%	-0.7%	0.7%	0.7%	22.2%	18.6%	-14.5%	-12.2%	-2.7%	-1.7%	2.2%	
bbasin_133	2.60	-0.7%	-1.0%	0.6%	1.0%	19.2%	15.9%	-13.8%	-11.3%	0.0%	0.1%	0.0%	
nction_118 each_1018	347.30 347.30	-0.8% -0.8%	-0.7% -0.7%	0.7%	0.7%	22.1% 22.1%	18.5% 18.5%	-14.4% -14.4%	-12.2%	-2.6% -2.6%	-1.7% -1.7%	2.2%	
bbasin_136	1.70	-0.8%	-0.7%	2.8%	7.5%	17.4%	0.1%	-14.4%	-12.2%	-2.6%	-1.7%	0.0%	
bbasin_136	0.30	-2.8%	-7.5%	1.3%	6.1%	17.4%	0.1%	-12.7%	0.1%	0.0%	0.0%	0.0%	
nction_119	0.30	-1.7%	-6.1%	1.3%	6.1%	12.1%	0.0%	-10.3%	0.0%	0.0%	0.0%	0.0%	
each_1019	0.30	-1.3%	-6.1%	1.3%	6.1%	11.8%	0.0%	-10.0%	0.0%	-1.3%	-0.1%	0.4%	
bbasin_135	0.30	-3.5%	-13.6%	3.8%	13.6%	8.6%	0.0%	-6.3%	0.0%	0.0%	0.0%	0.0%	
nction_120	0.60	-3.2%	-9.6%	3.0%	9.6%	9.1%	0.0%	-6.7%	0.0%	-0.6%	-0.1%	0.2%	
each_1020	0.60	-3.2%	-9.6%	3.0%	9.6%	9.1%	0.0%	-6.7%	0.0%	-0.6%	-0.1%	0.2%	
bbasin_137	0.30	-4.7%	-15.6%	4.7%	15.6%	6.9%	0.0%	-6.0%	0.0%	0.0%	0.0%	0.0%	
flowDurham	0.90	-4.0%	-11.7%	4.0%	11.7%	7.1%	0.0%	-5.1%	0.0%	-0.1%	0.0%	0.3%	
nction_121	349.90	-0.8%	-0.8%	0.8%	0.8%	22.0%	18.4%	-14.3%	-12.1%	-2.7%	-1.7%	2.4%	
each_1021 bbasin_138	349.90 4.90	-0.8%	-0.8% -1.9%	0.7%	0.8%	20.4%	18.4% 15.0%	-14.1% -13.1%	-12.1%	-3.5%	-2.0%	2.7%	
Sink-1	354.80	-0.8%	-0.8%	0.8%	0.8%	20.3%	13.3%	-13.1%	-11.2%	-3.4%	-1.9%	2.6%	
		2.270	2.570	2.270	2.270	/			/0	2	,	/0	
	Maximum	0.00%	-0.20%	4.73%	15.62%	33.08%							

Basin Model

Saugeen_HMS_Calibrated

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

Areal Reduction Factor: 0.766

Peak Flow and Runoff Volume Percent Change

		Hazel 75% Ca	nopy Storage	Hazel 125% Ca	nopy Storage	Hazel 75%	Depression	Hazel 125%	Depression
Hydrologic Element	Drainage Area (km^2)	Difference in Peak Flow (m ³ /s)	Difference in Volume (mm)	Difference in Peak Flow (m ³ /s)		Difference in Peak Flow (m ³ /s)		Difference	Difference in
Subbasin_129	24.80	0.0	0.1	0.0	-0.2	0.5	2.6	-0.5	-2.7
Subbasin_130	5.40	0.0	0.1	0.0	-0.2	0.2	3.4	-0.2	-3.4
Junction_116	30.30	0.0	0.1	0.0	-0.2	0.7	2.7	-0.7	-2.8
Subbasin_101	36.10	0.0	0.1	0.0	0.0	0.3	1.8	-0.3	-1.8
Subbasin_102	12.70	0.0	0.2	0.0	-0.1	0.4	3.7	-0.4	-3.6
Junction_101	48.80	0.0	0.1	0.0	0.0	0.6	2.3	-0.6	-2.3
Reach_1001	48.80	0.0	0.1	0.0	0.0	0.6	2.3	-0.6	-2.3
Subbasin_103	24.40	0.0	0.1	0.0	-0.1	0.6	3.1	-0.6	-3.0
		0.0	0.1	0.0	-0.2	0.0	4.3	-0.1	-4.5
Subbasin_104	1.20	0.0	0.1	0.0	-0.2	1.3	4.5	-0.1	-4.5
Junction_102	74.40								
Reach_1002	74.40	0.0	0.1	0.0	-0.1	1.3	2.5	-1.3	-2.5
Subbasin_105	21.00	0.0	0.1	0.0	-0.1	0.6	3.6	-0.6	-3.5
Subbasin_106	18.30	0.0	0.0	0.0	-0.2	0.3	2.3	-0.3	-2.5
Junction_103	39.30	0.0	0.1	0.0	-0.1	0.9	3.0	-1.0	-3.0
Reach_1003	39.30	0.0	0.1	0.0	-0.1	0.9	3.0	-1.0	-3.0
Subbasin_107	20.70	0.0	0.2	0.0	-0.1	0.6	3.4	-0.6	-3.3
Subbasin_108	3.30	0.0	0.1	0.0	-0.1	0.1	3.1	-0.1	-3.2
Junction_104	137.70	0.1	0.1	-0.1	-0.1	2.2	2.8	-2.3	-2.8
Reach_1004	137.70	0.1	0.1	-0.1	-0.1	2.4	2.7	-2.4	-2.6
Subbasin_109	11.40	0.0	0.1	0.0	-0.1	0.3	3.2	-0.3	-3.2
Subbasin_110	9.50	0.0	0.2	0.0	-0.1	0.3	3.3	-0.3	-3.2
Junction_105	158.50	0.1	0.1	-0.1	-0.1	2.8	2.8	-2.8	-2.7
Reach_1005	158.50	0.1	0.1	0.0	-0.1	2.8	2.6	-2.7	-2.6
Subbasin_111	25.60	0.0	0.1	0.0	0.0	0.4	2.5	-0.4	-2.4
Subbasin_112	6.80	0.0	0.1	0.0	-0.1	0.1	2.7	-0.1	-2.7
Junction_106	190.90	0.1	0.1	-0.1	-0.1	3.2	2.6	-3.2	-2.6
Reach_1006	190.90	0.1	0.1	-0.1	-0.1	3.2	2.6	-3.1	-2.6
Subbasin_113	8.00	0.0	0.0	0.0	-0.2	0.2	3.1	-0.2	-3.3
Junction_107	198.90	0.0	0.0	-0.1	-0.2	3.3	2.6	-0.2	-3.5
Reach_1007	198.90	0.1	0.1	-0.1	-0.1	3.3	2.6	-3.2	-2.6
Subbasin_114	198.90	0.1	0.1	-0.1	-0.1	3.3	3.2	-3.2	-2.6
Subbasin_115	1.40	0.0	0.1	0.0	-0.1	0.0	3.5	0.0	-3.5
Junction_108	217.30	0.1	0.1	-0.1	-0.1	3.4	2.7	-3.4	-2.6
Reach_1008	217.30	0.1	0.1	-0.1	-0.1	3.4	2.7	-3.4	-2.6
Subbasin_116	1.30	0.0	0.1	0.0	-0.2	0.0	3.4	0.0	-3.6
Junction_109	218.60	0.1	0.1	-0.1	-0.1	3.5	2.7	-3.4	-2.6
Reach_1009	218.60	0.1	0.1	-0.1	-0.1	3.5	2.6	-3.4	-2.6
Subbasin_117	9.50	0.0	0.1	0.0	-0.2	0.2	2.9	-0.2	-3.0
Subbasin_118	9.20	0.0	0.1	0.0	-0.2	0.2	3.0	-0.3	-3.2
Junction_110	237.30	0.1	0.1	-0.1	-0.1	3.6	2.7	-3.6	-2.6
Reach_1010	237.30	0.1	0.1	-0.1	-0.1	3.6	2.6	-3.6	-2.6
Subbasin_119	4.50	0.0	0.2	0.0	-0.2	0.1	2.4	-0.1	-2.5
Subbasin_120	3.30	0.0	0.2	0.0	-0.3	0.1	3.9	-0.1	-4.1
Junction_111	245.00	0.1	0.1	-0.1	-0.1	3.7	2.7	-3.6	-2.6
Reach_1011	245.00	0.1	0.1	-0.1	-0.1	3.7	2.6	-3.6	-2.6
Subbasin_121	15.00	0.0	0.0	0.0	-0.2	0.4	2.9	-0.4	-3.0
Subbasin_122	4.20	0.0	0.2	0.0	-0.2	0.1	3.6	-0.1	-3.6
Junction_112		0.0	0.2	-0.1	-0.2	3.8	2.7	-0.1	-3.0
	264.20								
Reach_1012	264.20	0.1	0.1	-0.1	-0.1	3.9	2.6	-3.8	-2.6
Subbasin_123	9.50	0.0	0.4	0.0	-0.2	0.3	3.3	-0.2	-3.1
Subbasin_124	5.40	0.0	0.2	0.0	-0.3	0.2	3.7	-0.2	-3.9
Junction_113	279.20	0.1	0.1	-0.1	-0.1	4.0	2.7	-3.9	-2.7
Reach_1013	279.20	0.1	0.1	-0.1	-0.1	4.0	2.7	-3.9	-2.7
Subbasin_125	9.00	0.0	0.1	0.0	-0.2	0.3	3.5	-0.3	-3.7
Subbasin_126	7.70	0.0	0.2	0.0	-0.2	0.3	3.9	-0.3	-4.0
Junction_114	296.00	0.0	0.2	-0.1	-0.1	4.2	2.7	-4.1	-2.7
Reach_1014	296.00	0.1	0.1	-0.1	-0.1	4.2	2.7	-4.1	-2.7
Subbasin_127	11.40	0.0	0.1	0.0	-0.2	0.3	3.2	-0.3	-3.3
Subbasin_128	1.80	0.0	0.3	0.0	-0.2	0.0	2.6	0.0	-2.6
Junction_115	309.20	0.1	0.1	-0.1	-0.1	4.3	2.7	-4.2	-2.7
Reach_1015	309.20	0.1	0.1	-0.1	-0.1	4.3	2.7	-4.2	-2.7
Subbasin_132	2.20	0.0	0.3	0.0	-0.2	0.0	2.2	0.0	-2.2
geen Flow Ga	311.40	0.1	0.1	-0.1	-0.1	4.3	2.7	-4.2	-2.7
Reach_1016	30.30	0.0	0.1	0.0	-0.2	4.5	2.7	-0.7	-2.8
Subbasin_131	30.30	0.0	0.1	0.0	-0.2	0.7	2.7	-0.7	-2.0
Junction_117	344.80	0.2	0.1	-0.2	-0.1	4.6	2.7	-4.6	-2.7
Reach_1017	344.80	0.2	0.1	-0.2	-0.1	4.6	2.7	-4.6	-2.7
Subbasin_133	2.60	0.0	0.4	0.0	-0.1	0.0	2.9	-0.1	-2.9
Junction_118	347.30	0.2	0.1	-0.2	-0.1	4.6	2.7	-4.7	-2.7
Reach_1018	347.30	0.2	0.1	-0.2	-0.1	4.6	2.7	-4.6	-2.7
Subbasin_136	1.70	0.0	0.2	0.0	-0.1	0.0	0.9	0.0	-0.8
Subbasin_134	0.30	0.0	0.2	0.0	-0.2	0.0	0.5	0.0	-0.5
		0.0	0.2	0.0	-0.2	0.0	0.6	0.0	-0.5
Junction_119	0.30								
Reach_1019	0.30	0.0	0.2	0.0	-0.2	0.0	0.5	0.0	-0.5
Subbasin_135	0.30	0.0	0.1	0.0	-0.2	0.0	0.2	0.0	-0.4
Junction_120	0.60	0.0	0.1	0.0	-0.2	0.0	0.4	0.0	-0.5
Reach_1020	0.60	0.0	0.1	0.0	-0.2	0.0	0.4	0.0	-0.5
Subbasin_137	0.30	0.0	0.2	0.0	-0.1	0.0	0.5	0.0	-0.2
	0.90	0.0	0.2	0.0	-0.2	0.0	0.4	0.0	-0.4
		0.2	0.1	-0.2	-0.1	4.7	2.7	-4.7	-2.7
	349.90								
OutflowDurham	349.90 349.90	0.2	0.1	-0.2	-0.1	4.6	2.7	-4.6	-2.7
OutflowDurham Junction_121			0.1	-0.2	-0.1	4.6	2.7	-4.6 0.0	-2.7
OutflowDurhan Junction_121 Reach_1021 Subbasin_138	349.90 4.90	0.2							
Junction_121 Reach_1021	349.90	0.2	0.3	0.0	-0.1	0.0	1.7	0.0	-1.6
DutflowDurhan Junction_121 Reach_1021 Subbasin_138	349.90 4.90 354.80	0.2 0.0 0.2	0.3	0.0 -0.2	-0.1 -0.1	0.0 4.6	1.7 2.7	0.0 -4.6	-1.6 -2.7
OutflowDurhan Junction_121 Reach_1021 Subbasin_138	349.90 4.90	0.2	0.3	0.0	-0.1	0.0	1.7	0.0	-1.6

Basin Model

Saugeen_HMS_Calibrated

Project No: 5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: 12-Dec-23

0.766

Areal Reduction Factor: Peak Flow and Runoff Volume Percent Change

		Hazel 75% Ca	nopy Storage	Hazel 1259	% Canopy	Hazel 75%	Depression	Hazel 125%	Depression
Hydrologic Element	Drainage Area (km^2)	Percent Difference in							
	(2)	Peak Flow	Volume						
Subbasin_129	24.80	0.1%	0.0%	-0.1%	-0.1%	1.4%	1.5%	-1.4%	-1.6%
Subbasin_130	5.40	0.0%	0.1%	-0.1%	-0.1%	1.4%	1.7%	-1.6%	-1.7%
Junction_116	30.30	0.1%	0.1%	-0.1%	-0.1%	1.4%	1.6%	-1.5%	-1.6%
Subbasin_101	36.10	0.1%	0.1%	0.0%	-0.1%	2.8%	2.9%	-2.7%	-2.9%
Subbasin_102	12.70	0.1%	0.1%	-0.1%	-0.1%	2.1%	2.3%	-2.1%	-2.3%
Junction_101	48.80	0.1%	0.1%	0.0%	-0.1%	2.4%	2.6%	-2.3%	-2.6%
Reach_1001	48.80	0.1%	0.1%	0.0%	-0.1%	2.4%	2.6%	-2.5%	-2.6%
Subbasin_103	24.40	0.1%	0.1%	0.0%	-0.1%	2.1%	2.3%	-2.1%	-2.3%
Subbasin_104	1.20	0.0%	0.0%	0.0%	-0.1%	1.5%	2.0%	-1.8%	-2.0%
Junction_102	74.40	0.1%	0.1%	-0.1%	-0.1%	2.3%	2.5%	-2.4%	-2.5%
Reach_1002	74.40	0.1%	0.1%	-0.1%	-0.1%	2.3%	2.5%	-2.3%	-2.5%
Subbasin_105	21.00	0.1%	0.1%	0.0%	0.0%	1.9%	2.1%	-1.9%	-2.1%
Subbasin_106	18.30	0.1%	0.0%	-0.1%	-0.1%	1.9%	2.1%	-2.0%	-2.2%
Junction_103	39.30	0.1%	0.1%	-0.1%	-0.1%	1.9%	2.1%	-1.9%	-2.1%
Reach_1003	39.30	0.0%	0.1%	-0.1%	-0.1%	1.9%	2.1%	-1.9%	-2.1%
Subbasin_107	20.70	0.1%	0.1%	0.0%	0.0%	2.1%	2.4%	-2.1%	-2.3%
Subbasin_108	3.30	0.1%	0.0%	0.0%	-0.1%	0.8%	1.1%	-0.9%	-1.2%
Junction_104	137.70	0.1%	0.1%	-0.1%	-0.1%	1.7%	2.3%	-1.8%	-2.2%
Reach_1004	137.70	0.1%	0.1%	-0.1%	-0.1%	1.9%	2.3%	-1.9%	-2.3%
Subbasin_109	11.40	0.1%	0.1%	-0.1%	-0.1%	2.6%	2.8%	-2.7%	-2.8%
Subbasin_110	9.50	0.1%	0.1%	-0.1%	0.0%	1.9%	2.1%	-1.9%	-2.1%
Junction_105 Reach 1005	158.50 158.50	0.1%	0.1%	0.0%	-0.1%	2.3%	2.3%	-1.9%	-2.3%
		0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.3%	-2.4%
Subbasin_111 Subbasin_112	25.60 6.80	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.3%	-2.4%
Junction_106		0.0%	0.1%	0.0%	-0.1%	2.5%	2.6%	-2.5%	-2.6%
Reach 1006	190.90	0.1%	0.1%	-0.1%	-0.1%	2.3%	2.4%	-2.3%	-2.4%
Subbasin_113	8.00	0.1%	0.1%	-0.1%	-0.1%	1.7%	2.4%	-2.3%	-2.4%
Junction_107	198.90	0.0%	0.1%	0.1%	-0.1%	2.3%	2.4%	-2.3%	-2.1%
Reach_1007	198.90	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.3%	-2.4%
Subbasin_114	176.70	0.1%	0.1%	-0.1%	0.1%	2.3%	2.4%	-2.3%	-2.5%
Subbasin_115	1.40	0.0%	0.0%	-0.2%	0.0%	0.9%	1.2%	-0.9%	-1.2%
Junction_108	217.30	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.2%	-2.4%
Reach_1008	217.30	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.2%	-2.4%
Subbasin_116	1.30	0.2%	0.0%	0.0%	-0.1%	0.6%	1.0%	-0.6%	-1.0%
Junction_109	218.60	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.2%	-2.4%
Reach_1009	218.60	0.1%	0.1%	0.0%	-0.1%	2.3%	2.4%	-2.2%	-2.4%
Subbasin_117	9.50	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.8%	-1.7%	-1.9%
Subbasin_118	9.20	0.0%	0.0%	-0.1%	-0.1%	0.8%	1.1%	-0.9%	-1.2%
Junction_110	237.30	0.1%	0.1%	0.0%	-0.1%	2.2%	2.3%	-2.1%	-2.2%
Reach_1010	237.30	0.1%	0.1%	0.0%	-0.1%	2.2%	2.2%	-2.1%	-2.2%
Subbasin_119	4.50	0.0%	0.0%	-0.1%	0.0%	0.4%	0.6%	-0.4%	-0.7%
Subbasin_120	3.30	0.1%	0.0%	-0.1%	-0.1%	0.7%	1.1%	-0.8%	-1.2%
Junction_111	245.00	0.1%	0.1%	0.0%	-0.1%	2.1%	2.1%	-2.1%	-2.1%
Reach_1011	245.00	0.1%	0.1%	0.0%	-0.1%	2.1%	2.1%	-2.1%	-2.1%
Subbasin_121	15.00	0.0%	0.0%	-0.1%	-0.1%	1.6%	1.8%	-1.6%	-1.9%
Subbasin_122	4.20	0.1%	0.1%	-0.1%	-0.1%	0.9%	1.3%	-1.0%	-1.3%
Junction_112	264.20	0.1%	0.1%	0.0%	-0.1%	2.0%	2.1%	-2.0%	-2.1%
Reach_1012	264.20	0.1%	0.1%	0.0%	-0.1%	2.0%	2.1%	-2.0%	-2.1%
Subbasin_123	9.50	0.1%	0.1%	-0.1%	-0.1%	0.8%	1.1%	-0.7%	-1.0%
Subbasin_124	5.40	0.0%	0.1%	-0.2%	-0.1%	1.3%	1.6%	-1.5%	-1.7%
Junction_113	279.20	0.1%	0.1%	0.0%	-0.1%	2.0%	2.0%	-1.9%	-2.0%
Reach_1013	279.20	0.1%	0.1%	0.0%	-0.1%	2.0%	2.0%	-1.9%	-2.0%
Subbasin_125	9.00	0.0%	0.1%	-0.1%	-0.1%	1.1%	1.4%	-1.1%	-1.4%
Subbasin_126	7.70	0.0%	0.1%	-0.1%	-0.1%	1.1%	1.4%	-1.5%	-1.8%
Junction_114	296.00	0.1%	0.1%	-0.1%	-0.1%	1.9%	2.0%	-1.9%	-1.9%
Reach_1014	296.00	0.1%	0.1%	-0.1%	-0.1%	1.9%	2.0%	-1.9%	-1.9%
Subbasin_127	11.40	0.1%	0.1%	-0.1%	-0.1%	1.9%	1.8%	-1.9%	-2.0%
Subbasin_127	11.40	0.0%	0.1%	-0.1%	-0.1%	0.3%	0.6%	-1.7%	-1.9%
Junction_115	309.20	0.1%	0.1%	-0.1%	-0.1%	1.9%	1.9%	-0.2%	-0.8%
Reach_1015		0.1%	0.1%	-0.1%	-0.1%	1.9%	1.9%	-1.9%	-1.9%
Subbasin_132	309.20	0.1%	0.1%	-0.1%	-0.1%	0.2%	0.5%	-1.9%	-1.9%
	2.20								
augeen Flow Gauge	311.40	0.1%	0.1%	-0.1%	-0.1%	1.9%	1.9%	-1.8%	-1.9%
Reach_1016	30.30	0.0%	0.1%	-0.1%	-0.1%	1.4%	1.6%	-1.5%	-1.6%
Subbasin_131	3.10	0.0%	0.1%	-0.1%	-0.1%	0.2%	1.7%	-0.2%	-1.7%
Junction_117	344.80	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.9%	-1.7%	-1.9%
Reach_1017	344.80	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.9%	-1.7%	-1.9%
Subbasin_133	2.60	0.0%	0.1%	-0.1%	0.0%	0.5%	0.9%	-0.6%	-0.9%
Junction_118	347.30	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.8%	-1.7%	-1.9%
Reach_1018	347.30	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.8%	-1.7%	-1.9%
Subbasin_136	1.70	0.0%	0.2%	0.0%	-0.1%	0.3%	0.9%	-0.1%	-0.8%
Subbasin_134	0.30	0.0%	0.1%	0.0%	-0.1%	0.0%	0.3%	0.0%	-0.3%
Junction_119	0.30	0.0%	0.1%	0.0%	-0.1%	0.0%	0.3%	0.0%	-0.3%
Reach_1019	0.30	0.0%	0.1%	0.0%	-0.1%	0.0%	0.3%	0.0%	-0.3%
Subbasin_135	0.30	0.0%	0.1%	0.0%	-0.1%	0.0%	0.2%	0.0%	-0.3%
Junction_120	0.60	0.0%	0.1%	0.0%	-0.1%	0.0%	0.2%	0.0%	-0.3%
Reach_1020	0.60	0.0%	0.1%	0.0%	-0.1%	0.0%	0.2%	0.0%	-0.3%
Subbasin_137	0.30	0.0%	0.1%	0.0%	0.0%	0.0%	0.2%	0.0%	-0.1%
OutflowDurham	0.90	0.0%	0.1%	0.0%	-0.1%	0.1%	0.2%	0.0%	-0.2%
Junction_121	349.90	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.8%	-1.7%	-1.8%
Reach_1021	349.90	0.1%	0.1%	-0.1%	-0.1%	1.7%	1.8%	-1.7%	-1.9%
Subbasin_138	4.90	0.0%	0.1%	0.0%	0.0%	0.1%	0.4%	-0.1%	-0.4%
Sink-1	354.80	0.1%	0.1%	-0.1%	-0.1%	1.6%	1.8%	-1.6%	-1.8%
		-						-	

Appendix B4

Single Station Frequency Analysis

Project No: 5591 Project Name: Durham FPM Designed/Checked By: SO/MC Date: 18-Dec-23

Linear Regression Analysis Flow Data

		Flow	Data		
Max	<pre>c Instantane</pre>	eous		Max Daily	
Year	MMDD	MAX Flow (m ³ /s)	Year	MMDD	MAX Flow (m3/s)
1977	0315	126	1977	0315	104
1978	0413	80.1	1978	0413	77
1979	0415	91.6	1979	0415	81.6
1980	0321	70.6	1980	0321	32.3
1981	0222	97.7	1981	0222	92.6
1982	0418	87.1	1982	0418	84.1
1983	0308	22.1	1983	0308	21.1
1984	1230	81.2	1984	1230	73.5
1987	0326	41.7	1987	0326	39.6
1988	0327	42.1	1988	0327	40
1990	0313	108	1990	0314	86.9
1992	1114	54.1	1992	1114	49.5
1993	0105	61.5	1993	0105	54.9
1994	0404	27.2	1994	0405	24.3
1995	1112	31.9	1995	1112	30.6
1996	0119	62.6	1996	0120	49.2
1998	0328	78.7	1998	0328	65.5
2005	0401	63.7	2005	0402	45
2007	0327	53.2	2007	0327	50.9
2012	0314	42.9	2012	0314	40
2014	0414	73	2014	0414	63.5
2015	0411	30.1	2015	0411	29.3
2016	0401	88.6	2016	0401	85.9
2017	0225	56.4	2017	0225	53.7
2018	0221	124	2018	0221	104
2021	0312	61	2021	0313	48.6

Single Station Frequency Analysis Data

Project No: 5591 Project Name: Durham FPM Designed/Checked By: SO/MC Date: 18-Dec-23

Single Station Frequency Analysis Flow Data Flow Data **Max Instantaneous** Max Daily MAX Flow MAX Flow MM--DD Year MM--DD Year (m3/s) (m^3/s) 1977 03--15 126 1977 03--15 104 1978 04--13 80.1 1978 04--13 77 1979 04--15 91.6 1979 04--15 81.6 1980 70.6 1980 03--21 32.3 03--21 1981 02--22 97.7 1981 02--22 92.6 1982 04--18 87.1 1982 04--18 84.1 1983 03--08 22.1 1983 03--08 21.1 12--30 1984 1984 81.2 12--30 73.5 04--06 1985 46.5 1985 51 03--30 1987 03--26 41.7 1987 03--26 39.6 03--27 42.1 1988 1988 03--27 40 03--29 115 1989 129.0 1989 03--29 1990 03--13 108 1990 03--14 86.9 1991 03--29 68.4 1991 04--10 61.7 1992 11--14 54.1 1992 49.5 11--14 1993 01--05 61.5 1993 01--05 54.9 1994 04--04 27.2 1994 04--05 24.3 1995 1995 11--12 30.6 11--12 31.9 1996 01--19 62.6 1996 01--20 49.2 1998 03--28 78.7 1998 03--28 65.5 2005 04--01 63.7 2005 04--02 45 2006 03--14 90.8 2006 03--14 80 2007 03--27 53.2 2007 03--27 50.9 94.9 2008 12--29 2008 12--29 83.8 57.6 2009 02--13 2009 02--13 49.6 2010 03--15 61.4 2010 03--15 53.1 2011 03--19 2011 03--19 31.4 37.7 2012 03--14 42.9 2012 03--14 40 2014 04--14 73 2014 04--14 63.5 2015 2015 04--11 30.1 04--11 29.3 2016 04--01 88.6 2016 04--01 85.9 2017 02--25 56.4 2017 02--25 53.7 2018 02--21 124 2018 02--21 104 2019 2019 45.4 03--16 53.0 03--16 2020 03--30 41.9 2020 01--12 37.8

Estimated

2021

03--12

61

2021

03--13

Station Frequency Analysis for Saugeen River

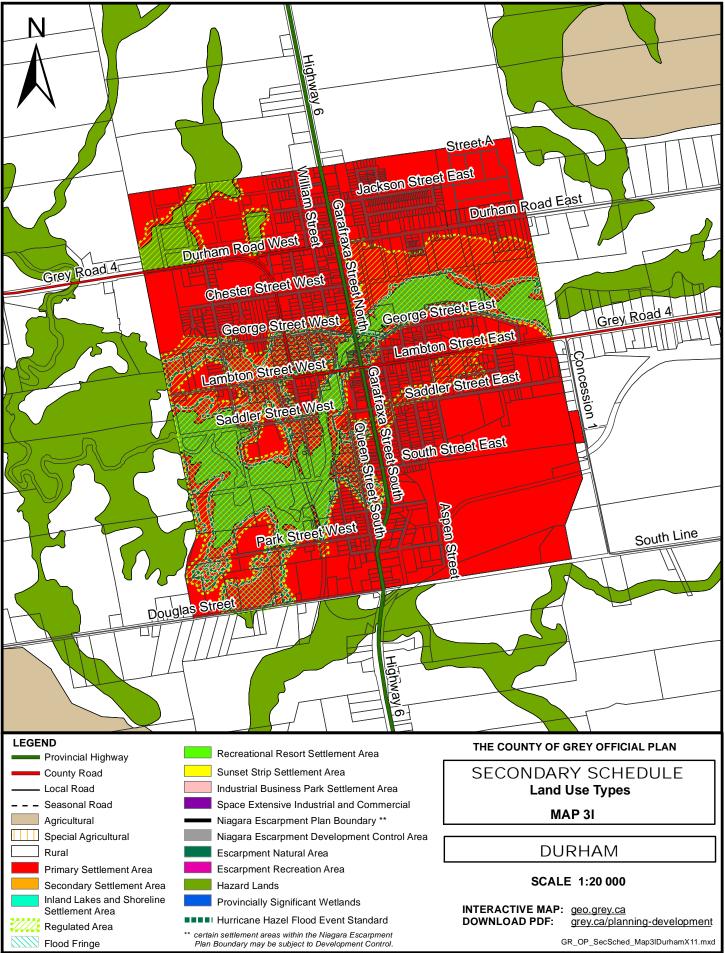
Project No: 23-5591 Project Name: Durham Creek FPM Designed/Checked By: SO/MC Date: December 12, 2023

Hydrologic Properties of Catchment Area

Catchment Name	Saugeen River	
Catchment Area	347.3 km ²	
Hydrology Model Catchment ID	-	

Hydrometric (Gauging Station) Data

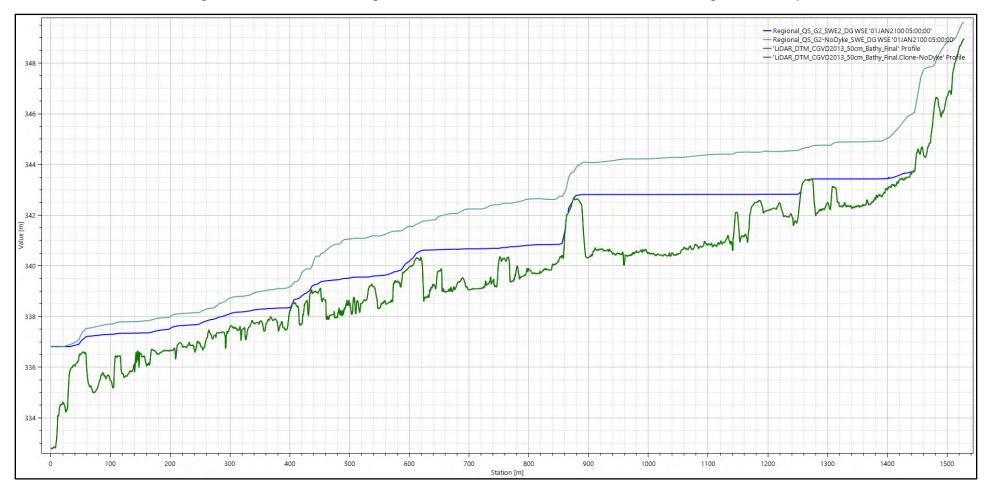
Station Number	Station Name	Period of Record	Drainage Area (km²)	Source
02FC016	SAUGEEN RIVER ABOVE DURHAM	44	311.4	Water Survey of Canada
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-


HEC-SSP Results

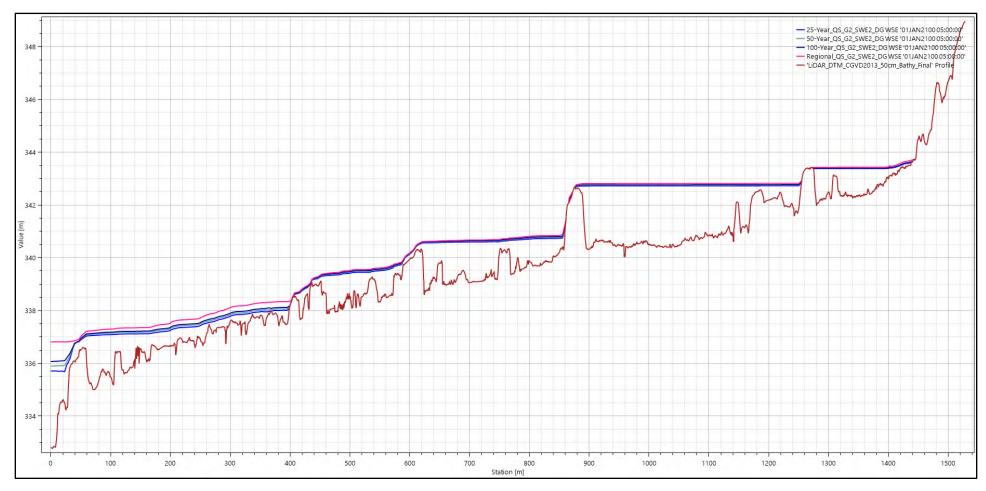
Percent Chance	Return Period	Probability	Peak Flow (cms)		
Exceedance	(years)		02FC016		
50	2	0.5	62.2		
20	5	0.2	90.3		
10	10	0.1	109.8		
4	25	0.04	135.1		
2	50	0.02	154.6		
1	100	0.01	174.4		
0.1	1000	0.001	244.7		

Appendix B5

Official Plan and Zoning



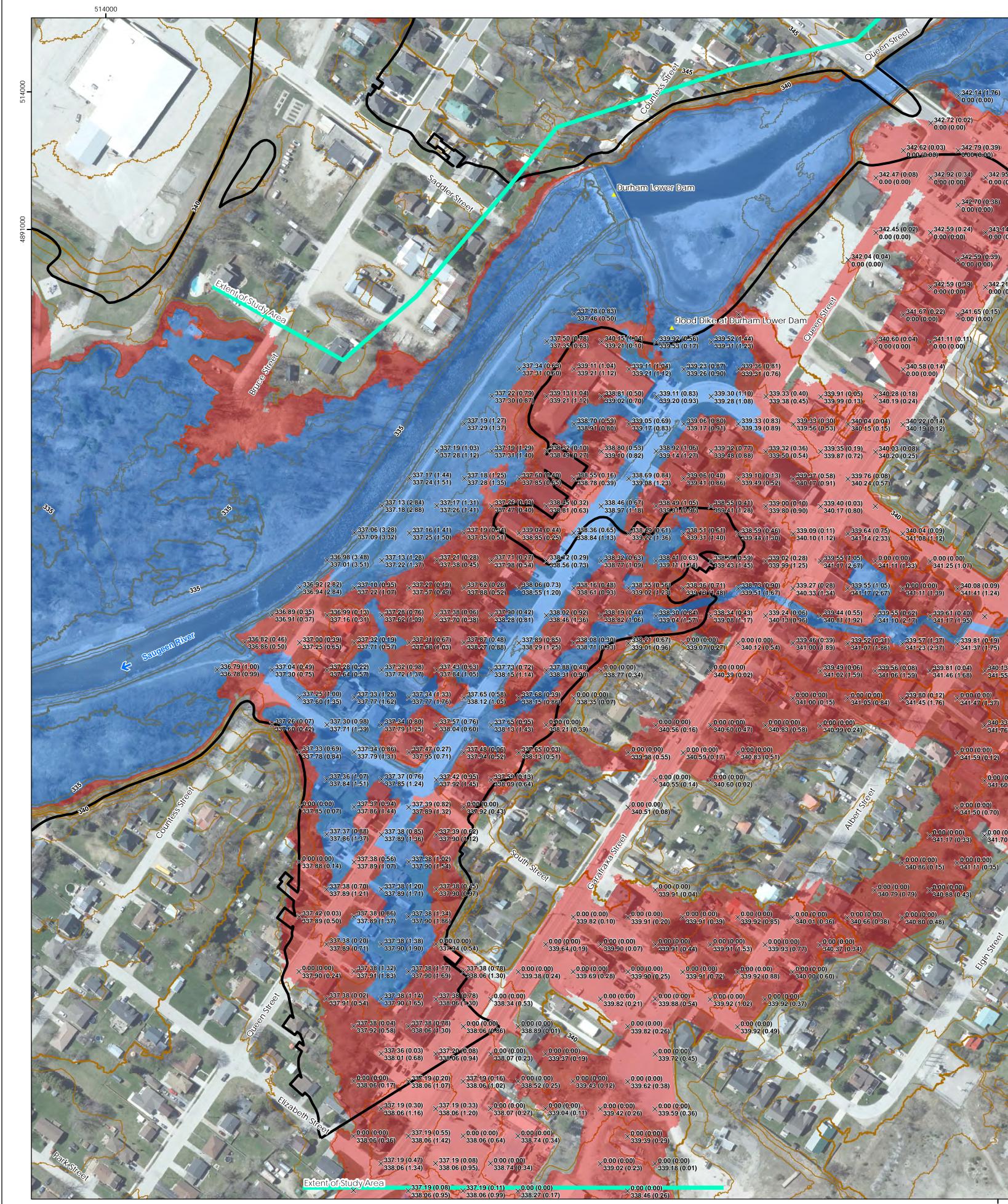
This map is for illustrative purposes only. Do not rely on this map as being a precise indicator of routes, location of features or surveying purposes. This map may contain cartographical errors or omissions.

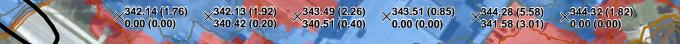

Appendix C

Hydraulic Study

Profile Along Durham Creek Showing Hurricane Hazel and Hurricane Hazel with Saugeen River Spill Results

Profile Along Durham Creek Showing 25-Year, 50-Year, 100-Year, and Hurricane Hazel Results




Profile Along Durham Creek Showing 50-Year, 100-Year, and Hurricane Hazel Climate Change Results

Appendix D

Floodplain Mapping

×343.44 (0.65) ×343.70 (0.45)

0.00 (0.00)

42.47 (0.08)

[,]342.62 (0.03) _×342.79 (0.39) _×343.43 (1.11) _×343.41 (0.51)

342.72 (0.02) 0.00 (0.00)

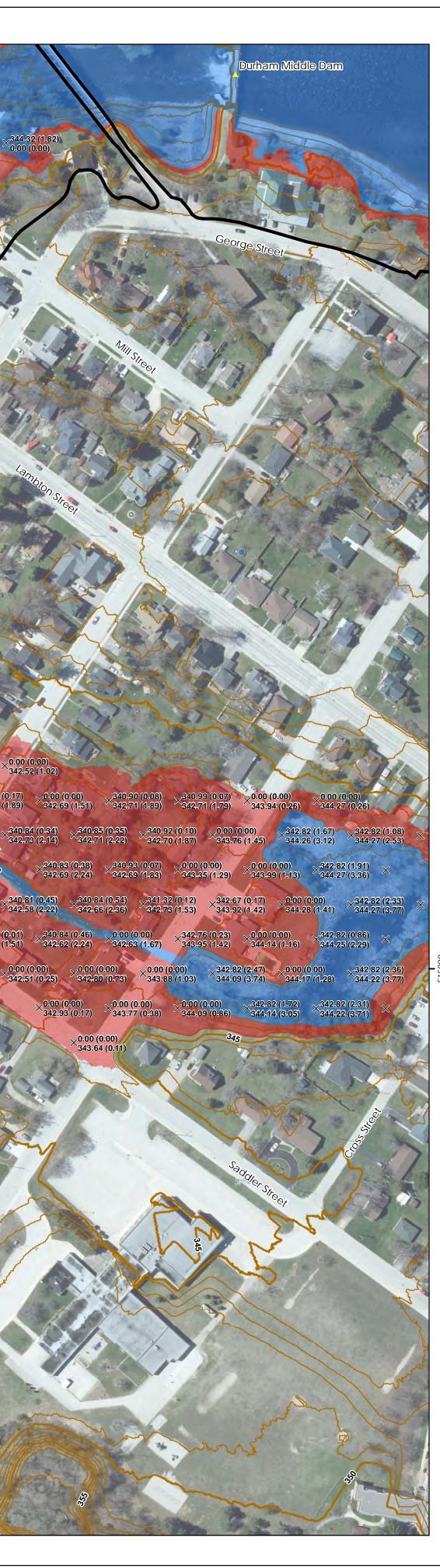
342.59 (0.24)

 $\times \overset{339.13}{_{339.21}} \overset{(1.04)}{_{339.22}} \times \overset{338.81}{_{339.02}} \overset{(0.50)}{_{(0.70)}} \times \overset{339.11}{_{339.20}} \overset{(0.83)}{_{(0.93)}} \times \overset{339.30}{_{339.28}} \overset{(1.10)}{_{(1.08)}} \times \overset{339.33}{_{339.33}} \overset{(0.40)}{_{(0.45)}} \times \overset{339.91}{_{339.99}} \overset{(0.05)}{_{(0.13)}} \times \overset{340.28}{_{340.19}} \overset{(0.18)}{_{(0.24)}} \times \overset{(0.18)}$

0.00 (0.00)

.55 (0.16) ×338.69 (0.84) ×339.06 (0.40) ×339.10 (0.13) ×339.37 (0.58) ×339.76 (0.08 .78 (0.39) ×339.08 (1.23) ×339.41 (0.86) ×339.49 (0.52) ×340.17 (0.91) ×340.24 (0.57 ×338.51 (0.61) ×338.59 (0.46) ×339.09 (0.11) ×339.64 (0.75) ×340.04 (0.09) 339.31 (1.40) ×339.44 (1.30) ×340.10 (1.12) ×341.14 (2.33) ×341.08 (1.12)

×339.02 (0.28) ×339.55 (1.05) ×0.00 (0.00) ×0.00 (0.00) ×0.00 (0.00) ×341.11 (1.33) ×341.25 (1. 339.11 (1.34) 339.43 (1.45) 339.99 (1.25) 341.25 (1.0 $\times \overset{339.24}{\times} \overset{(0.06)}{\times} \overset{339.44}{\times} \overset{(0.55)}{\times} \overset{339.55}{\times} \overset{(0.62)}{\times} \overset{339.61}{\times} \overset{(0.40)}{\times} \overset{340.13}{\times} \overset{(0.96)}{\times} \overset{340.81}{\times} \overset{(1.92)}{\times} \overset{(0.62)}{\times} 338.34 (0.43)

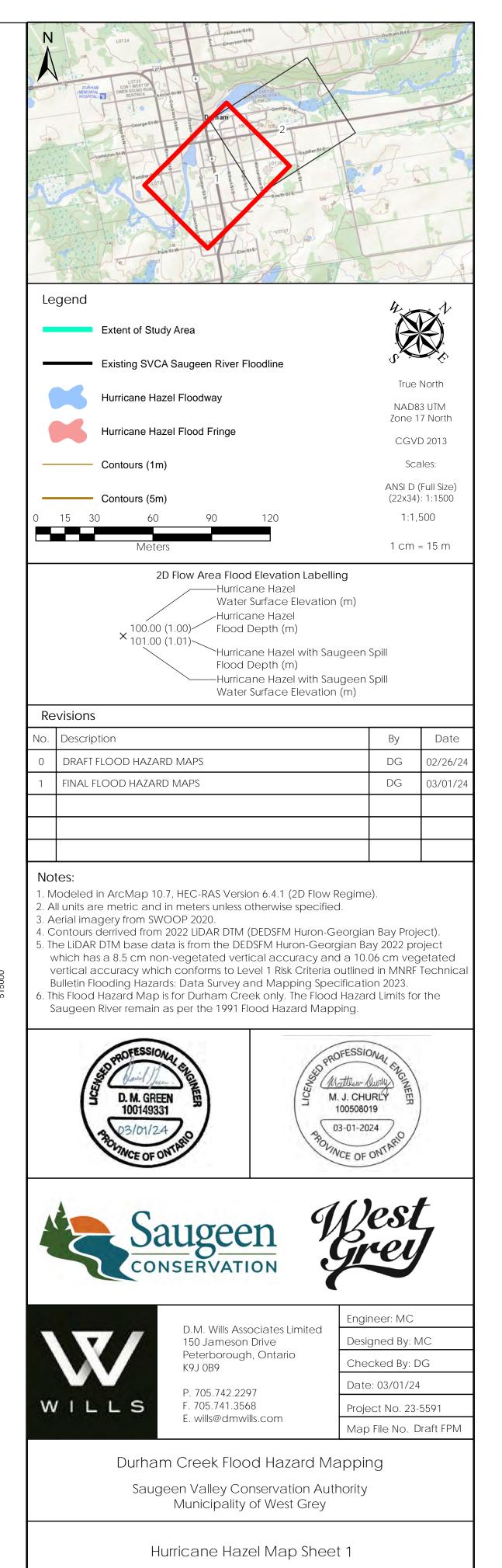

×339.46 (0.39) ×339.52 (0.31) ×339.57 (1.37) ×339.81 (0.19) 341.00 (1.89) ×341.07 (1.86) ×341.23 (2.37) ×341.37 (1.75) ×340.62 (0.58) ×340.65 (0.62) ×340.66 (0.15) 341.80 (1.86) ×342.03 (2.00) ×342.13 (1.62) 340.12 (0.54) $\begin{array}{c} \times 339.49 \ (0.06) \\ \times 341.06 \ (1.59) \end{array} \times \begin{array}{c} 339.81 \ (0.04) \\ 341.06 \ (1.59) \end{array} \times \begin{array}{c} 339.81 \ (0.04) \\ 341.46 \ (1.68) \end{array} \times \begin{array}{c} 340.13 \ (0.16) \\ 341.55 \ (1.58) \end{array} \times \begin{array}{c} 340.65 \ (0.43) \\ 342.07 \ (1.85) \end{array} \times \begin{array}{c} 340.66 \ (0.56) \\ 342.08 \ (1.99) \end{array} \times \begin{array}{c} 340.72 \ (0.06) \\ 342.32 \ (1.54) \end{array} \times \begin{array}{c} 340.65 \ (0.43) \\ 342.07 \ (1.85) \end{array} \times \begin{array}{c} 340.66 \ (0.56) \\ 342.08 \ (1.99) \end{array} \times \begin{array}{c} 340.72 \ (0.06) \\ 342.32 \ (1.54) \end{array} \times \begin{array}{c} 340.65 \ (0.43) \\ 342.07 \ (1.85) \end{array} \times \begin{array}{c} 340.66 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.72 \ (0.06) \\ 342.32 \ (1.54) \end{array} \times \begin{array}{c} 340.65 \ (0.43) \\ 342.07 \ (1.85) \end{array} \times \begin{array}{c} 340.66 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.72 \ (0.06) \\ 342.32 \ (1.54) \end{array} \times \begin{array}{c} 340.65 \ (0.43) \\ 342.07 \ (1.85) \end{array} \times \begin{array}{c} 340.66 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.72 \ (0.06) \\ 342.32 \ (1.54) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (0.56) \\ 342.08 \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (1.90) \ (1.90) \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (1.90) \ (1.90) \end{array} \times \begin{array}{c} 340.65 \ (1.90) \$ 0.00 (0.00) 339.80 (0.12) 0.00 (0.00) 340.32 (0.29) 340.66 (0.48) 340.67 (0.42) 340.71 (0.40) 340.81 (0.45) 340.84 (0.54) 341.32 (0.12) 342.67 (0.17) [^]341.05 (0.84) [^]341.45 (1.76) [^]341.47 (1.37) [^]341.76 (1.73) ^342.21 (1.96) ^342.34 (2.02) ^342.58 (2.22) ^342.66 (2.36) ^342.73 (1.53) ^343.92 (1.42) ^344.28 (1.41) ^344.27 (3.77) 342.15 (1.88) $\times ^{340.70\ (0.40)}_{342.31\ (2.02)} \times ^{340.93\ (0.01)}_{342.45\ (1.51)} \times ^{340.84\ (0.46)}_{342.62\ (2.24)} \times ^{0.00\ (0.00)}_{342.63\ (1.67)}$ ×342.76 (0.23) 343.95 (1.42) く0.00 (0.00) 340.83 (0.5 _____0.00 (0.00) ×0.00 (0.00) ×0.00 (0.00) `342.80 (0.73) 343.88 (1.03)

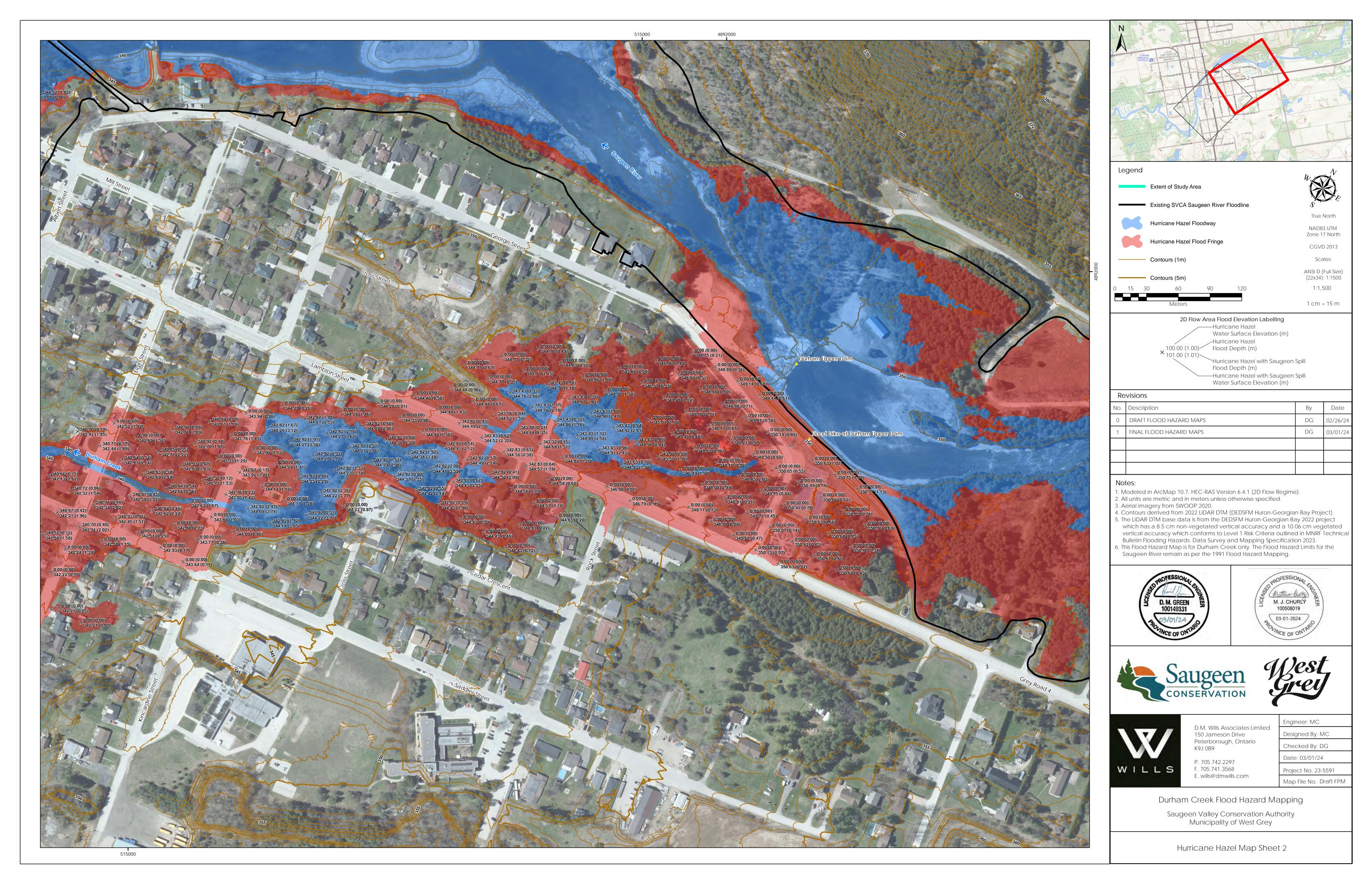
0.63 (0.92) 340.66 (0.55)

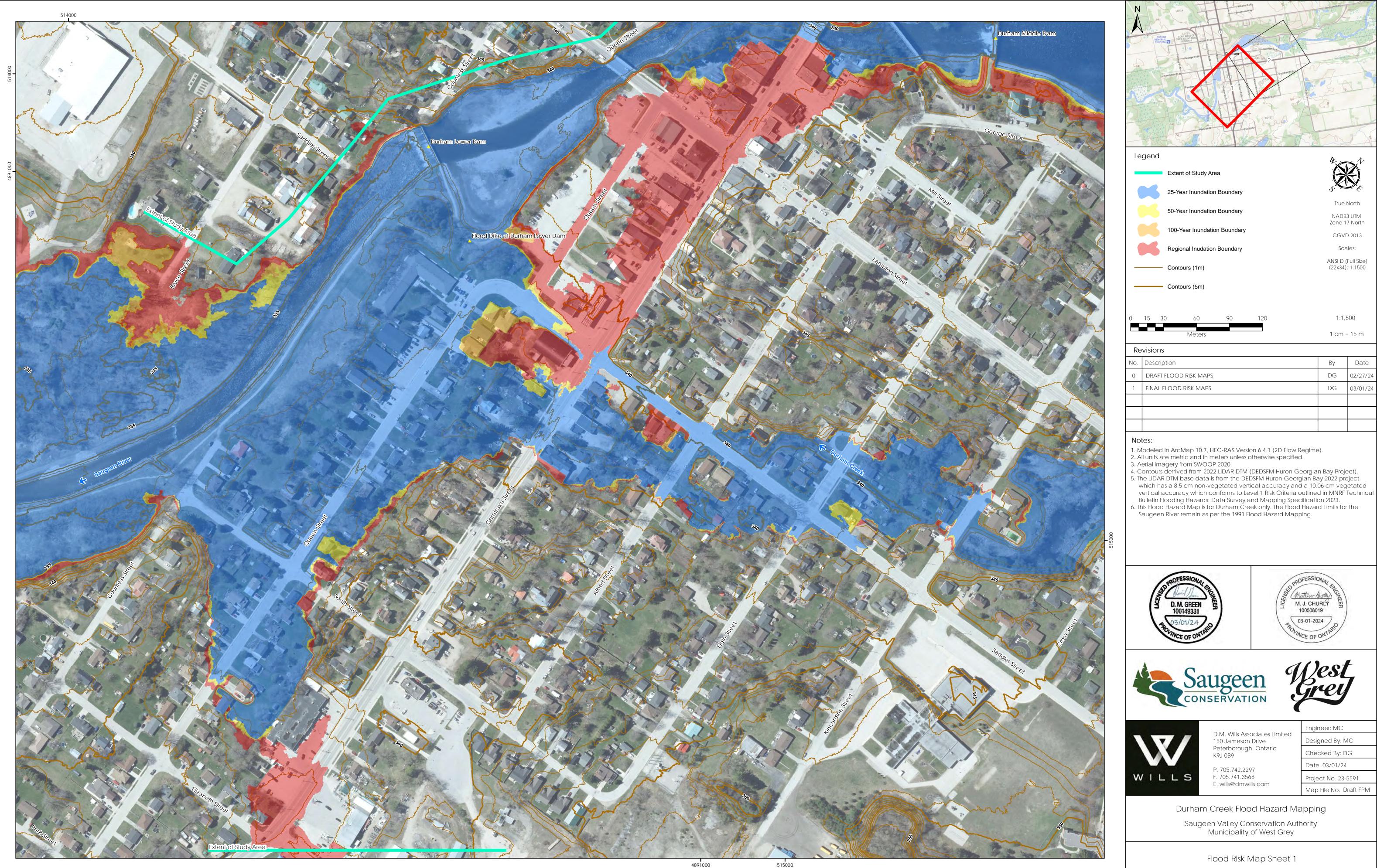
0.00 (0.00) **~0.00 (0.00** 339.92 (0.85)

4891000

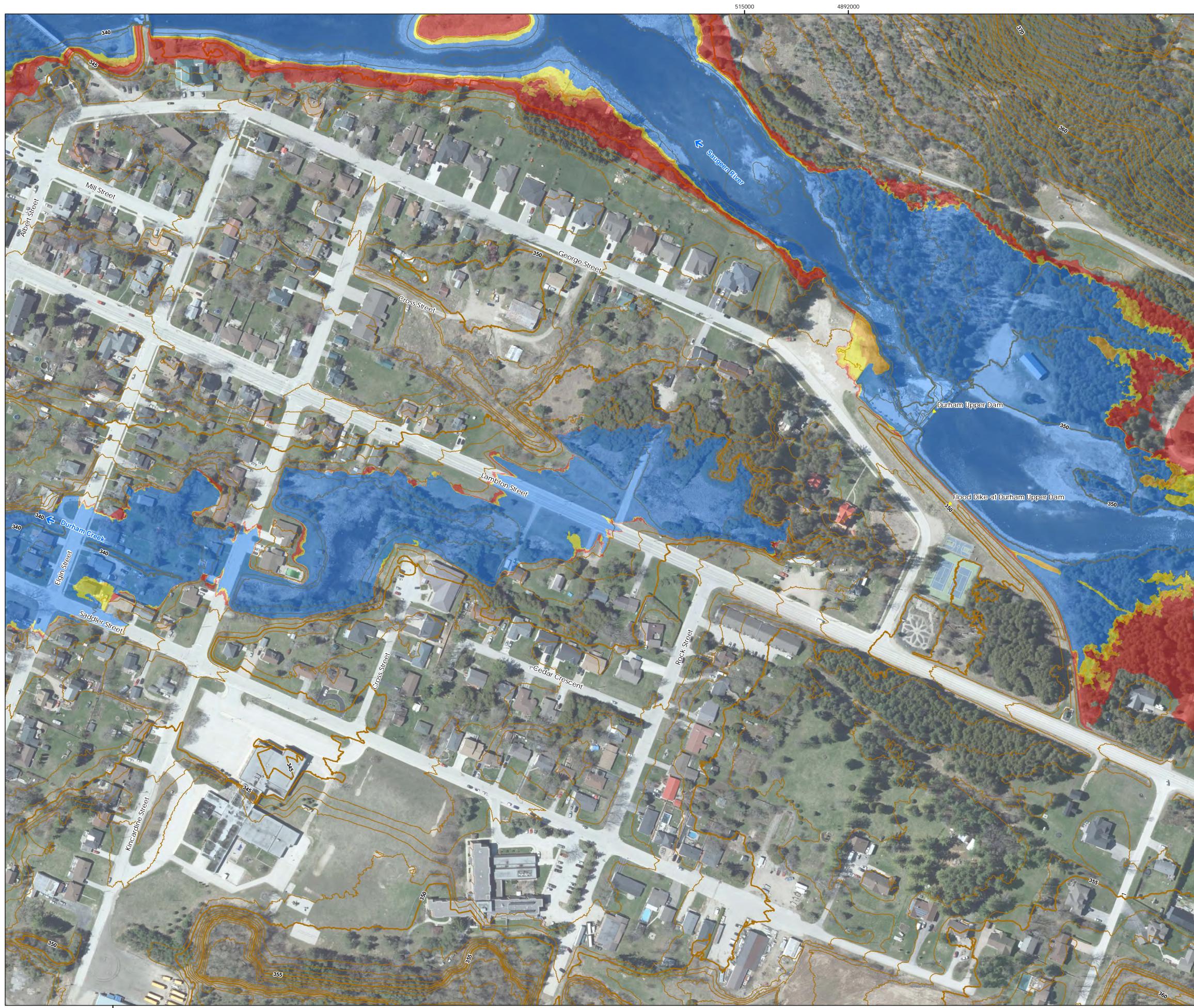
515000

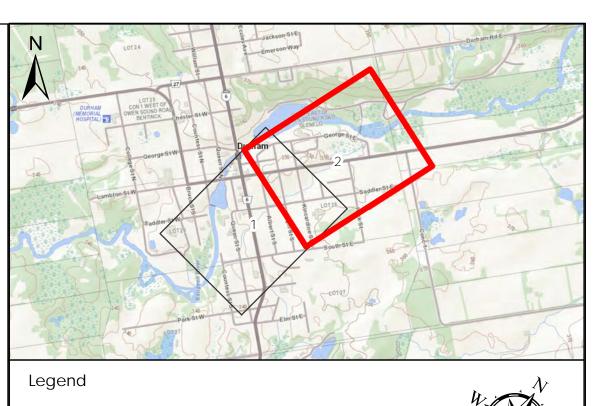

√340.90 (0.08)


342.69 (1.51)

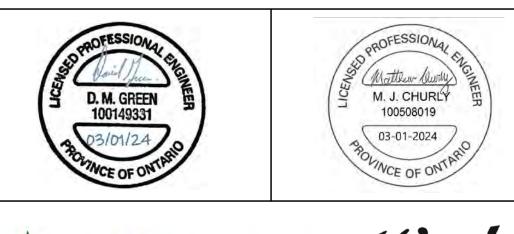

^342.44 (1.89)

340.99 (0.07)


342.71 (1.89) ³42.71 (1.79)



Flood Risk Map Sheet 1

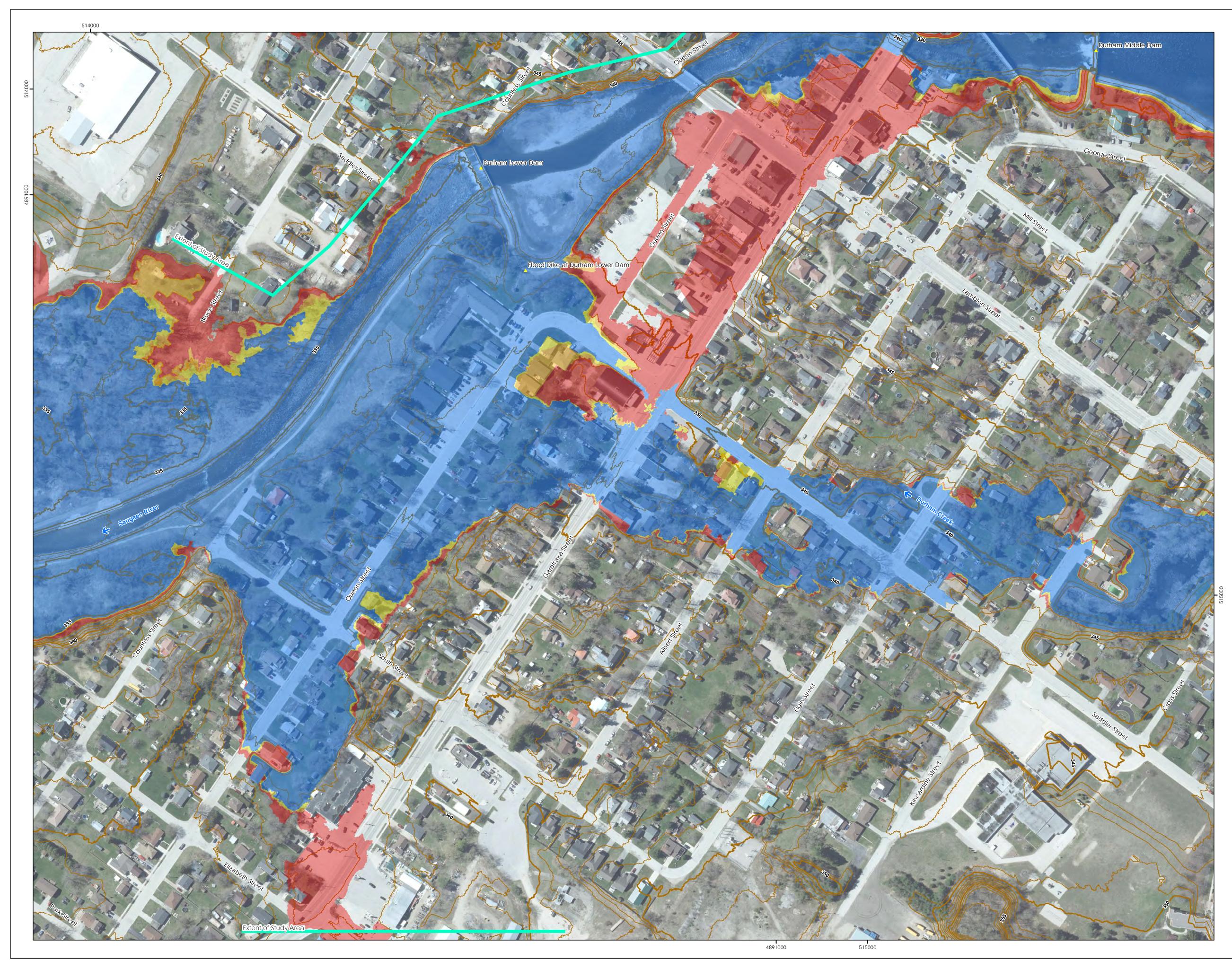

	Extent of Study Area	
	25-Year Inundation Boundary	S E
	50-Year Inundation Boundary	True North NAD83 UTM
	100-Year Inundation Boundary	Zone 17 North CGVD 2013
-	Regional Inudation Boundary	Scales:
	Contours (1m)	ANSI D (Full Size) (22x34): 1:1500
	Contours (5m)	

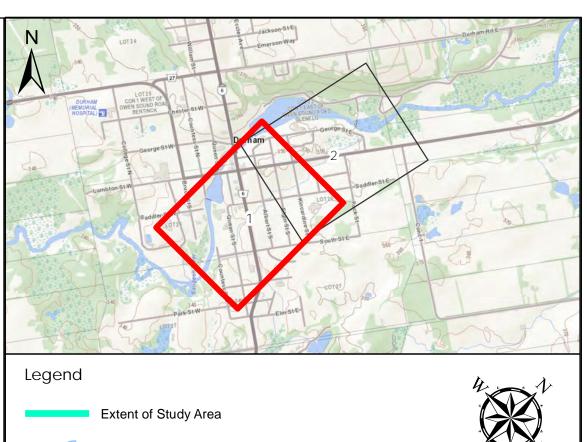
0	15	30	60	90	120	1:1,500
			Meters			1 cm = 15 m
R	evisio	ons				

02/27/24
03/01/24

Notes:

- Notes:
 Modeled in ArcMap 10.7, HEC-RAS Version 6.4.1 (2D Flow Regime).
 All units are metric and in meters unless otherwise specified.
 Aerial imagery from SWOOP 2020.
 Contours derrived from 2022 LiDAR DTM (DEDSFM Huron-Georgian Bay Project).
 The LiDAR DTM base data is from the DEDSFM Huron-Georgian Bay 2022 project which has a 8.5 cm non-vegetated vertical accuracy and a 10.06 cm vegetated vertical accuracy which conforms to Level 1 Risk Criteria outlined in MNRF Technical Bulletin Flooding Hazards: Data Survey and Mapping Specification 2023.
 This Flood Hazard Map is for Durham Creek only. The Flood Hazard Limits for the Saugeen River remain as per the 1991 Flood Hazard Mapping.


P. 705.742.2297 F. 705.741.3568 E. wills@dmwills.com


Engineer: MC Designed By: MC Checked By: DG Date: 03/01/24 Project No. 23-5591 Map File No. Draft FPM

Durham Creek Flood Hazard Mapping

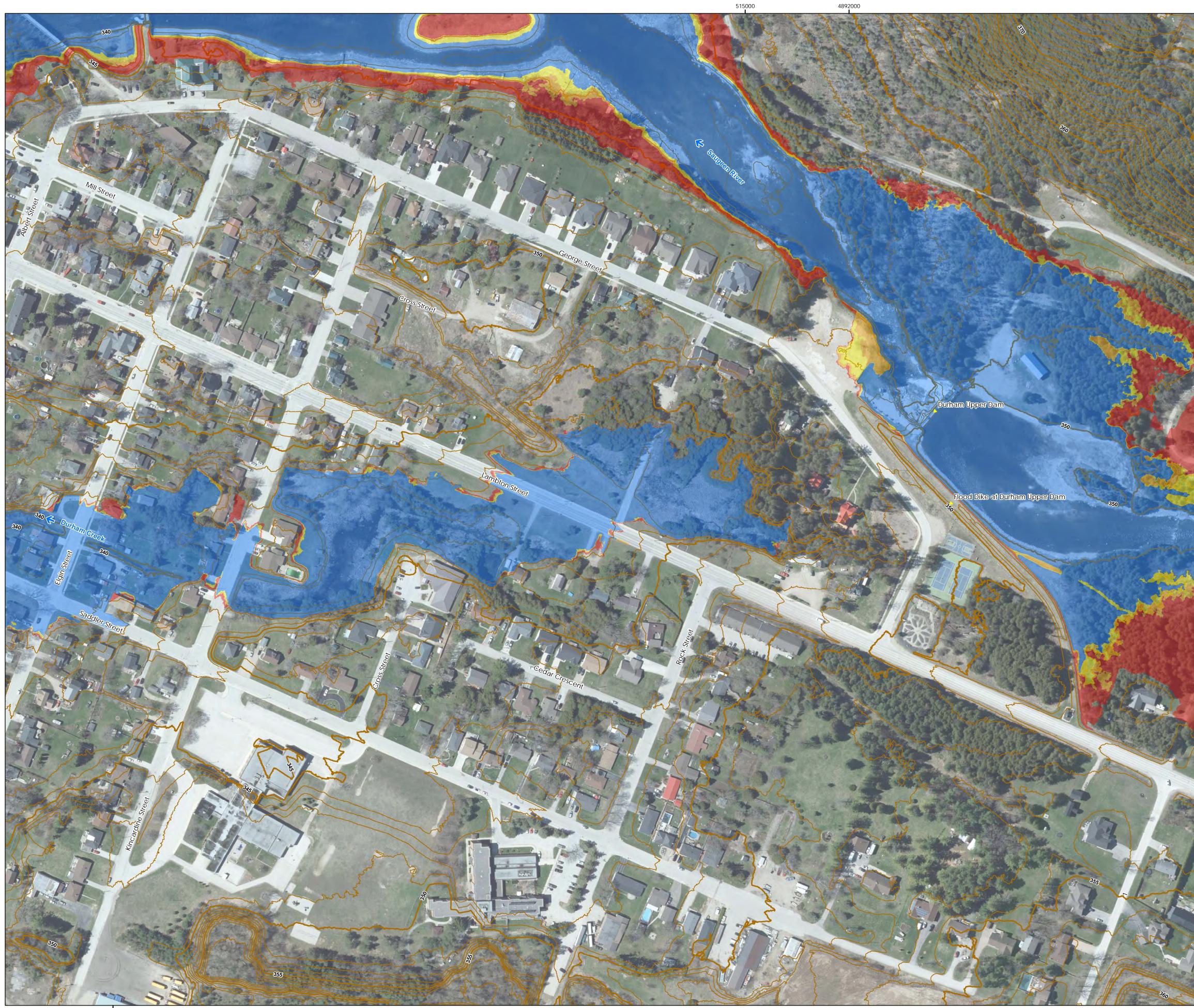
Saugeen Valley Conservation Authority Municipality of West Grey

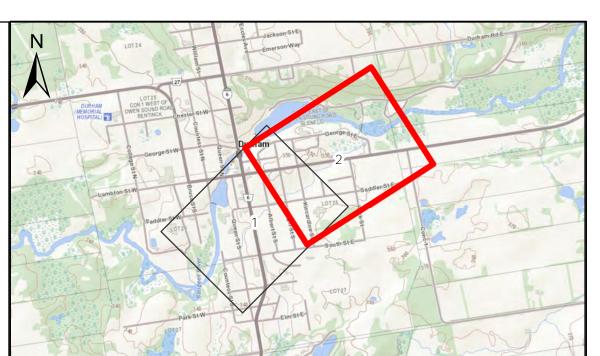
Flood Risk Map Sheet 2

)

0	15	30	60	90	120	1:1,500
			Meters			1 cm = 15 m

Re	Revisions						
No.	Description	Ву	Date				
0	DRAFT CLIMATE CHANGE FLOOD RISK MAPS	DG	02/27/24				
1	FINAL CLIMATE CHANGE FLOOD RISK MAPS	DG	03/01/24				


Notes:


- Notes:
 Modeled in ArcMap 10.7, HEC-RAS Version 6.4.1 (2D Flow Regime).
 All units are metric and in meters unless otherwise specified.
 Aerial imagery from SWOOP 2020.
 Contours derrived from 2022 LiDAR DTM (DEDSFM Huron-Georgian Bay Project).
 The LiDAR DTM base data is from the DEDSFM Huron-Georgian Bay 2022 project which has a 8.5 cm non-vegetated vertical accuracy and a 10.06 cm vegetated vertical accuracy which conforms to Level 1 Risk Criteria outlined in MNRF Technical Bulletin Flooding Hazards: Data Survey and Mapping Specification 2023.
 This Flood Hazard Map is for Durham Creek only. The Flood Hazard Limits for the Saugeen River remain as per the 1991 Flood Hazard Mapping.

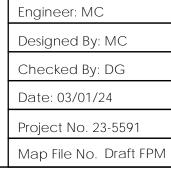
Durham Creek Flood Hazard Mapping Saugeen Valley Conservation Authority Municipality of West Grey

Climate Change Flood Risk Map Sheet 1

Legend		H N
	Extent of Study Area	
	25-Year Climate Change Inundation Boundary	S E
		True North
	50-Year Climate Change Inundation Boundary	NAD83 UTM Zone 17 North
	100-Year Climate Change Inundation Boundary	CGVD 2013
	Regional Climate Change Inudation Boundary	Scales:
	Contours (1m)	ANSI D (Full Size) (22x34): 1:1500
	Contours (5m)	

0 15	30	60	90	120	1:1,500
		Meters			1 cm = 15 m

Re	Revisions						
No.	Description	Ву	Date				
0	DRAFT CLIMATE CHANGE FLOOD RISK MAPS	DG	02/27/24				
1	FINAL CLIMATE CHANGE FLOOD RISK MAPS	DG	03/01/24				
	·						


Notes:

- Notes:
 Modeled in ArcMap 10.7, HEC-RAS Version 6.4.1 (2D Flow Regime).
 All units are metric and in meters unless otherwise specified.
 Aerial imagery from SWOOP 2020.
 Contours derrived from 2022 LiDAR DTM (DEDSFM Huron-Georgian Bay Project).
 The LiDAR DTM base data is from the DEDSFM Huron-Georgian Bay 2022 project which has a 8.5 cm non-vegetated vertical accuracy and a 10.06 cm vegetated vertical accuracy which conforms to Level 1 Risk Criteria outlined in MNRF Technical Bulletin Flooding Hazards: Data Survey and Mapping Specification 2023.
 This Flood Hazard Map is for Durham Creek only. The Flood Hazard Limits for the Saugeen River remain as per the 1991 Flood Hazard Mapping.

Durham Creek Flood Hazard Mapping

Saugeen Valley Conservation Authority Municipality of West Grey

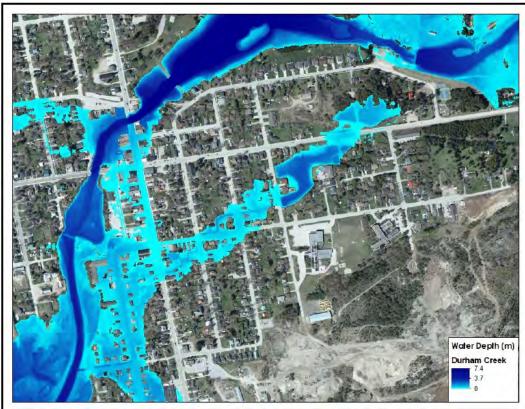
Climate Change Flood Risk Map Sheet 2

Durham Creek Floodplain Mapping Overview of 2023/24 Flood Hazard Identification Mapping Program Project

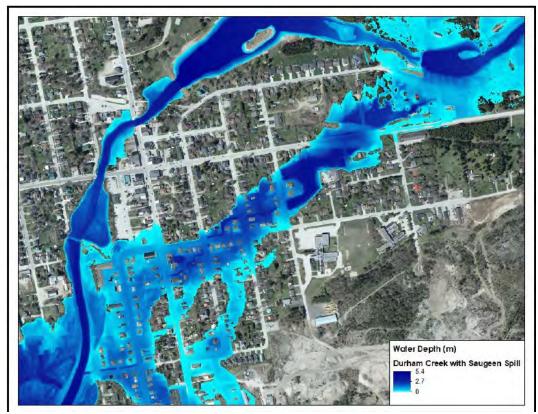
Matt Armstrong

Manager, Environmental Planning and Regulations Saugeen Valley Conservation Authority March 18, 2025

FHIMP Overview


- In January 2022, Natural Resources Canada launched the Flood Hazard Identification and Mapping Program (FHIMP)
- Up to 50% matched federal funding to provinces and territories for eligible flood mapping projects (until 2028)
- SVCA partnered with West Grey, Huron-Kinloss, and Saugeen Shores to have updated or new floodplain mapping produced
- Durham Creek was identified as a priority area for West Grey

Durham Creek



- Durham Creek flows through the east side of Durham, outlets to Saugeen River below Lower Dam
- No previous engineered floodplain mapping for Durham Creek
- DM Wills Associates Ltd. created hydrologic and hydraulic models to produce floodplain mapping
- Saugeen River influences Durham Creek Floodplain and was also modelled

Hydraulic Model Results

Floodplain without spill from Saugeen River at Upper Durham Dam

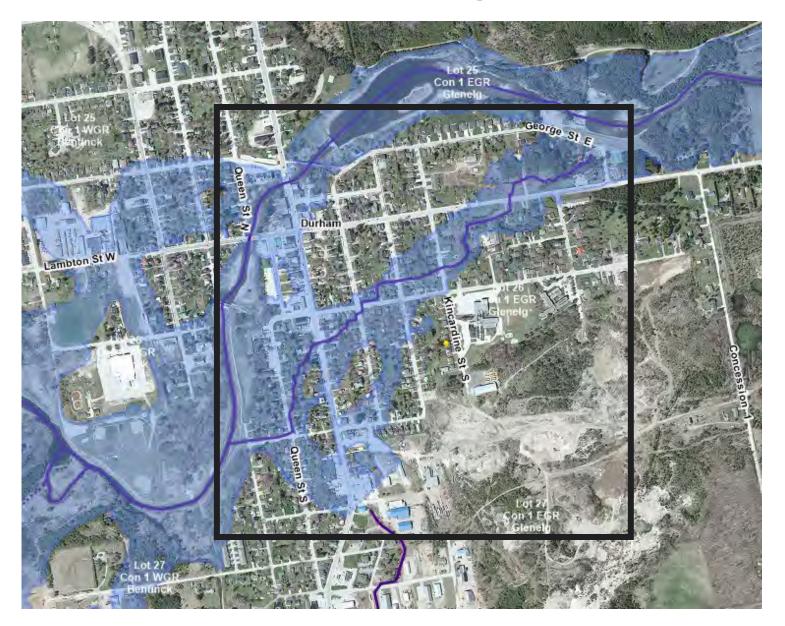
Floodplain with spill from Saugeen River at Upper Durham Dam

Public Information Centres (PICs)

Flo	od Hazard Mapping	Process	
Review existing floodplain mapping, if available. Obtain available GIS data (IDAR DTM, land cover, solis). Obtain hydrometric data (rainfall, streamfrow, leve)). Complete topographic survey of hydraulic structures (i.e., bridges, culverts, dams). Complete bathymetric survey of river/creek cross-sections.	Hydrology Słudy Develop analyticał approach. Prepare hydrologic model usina HEC-HMS (catchment	3 Hydraulic Modelling • Develop modelling approach (ID vs. 2D HEC-RAS). • Prepare hydroloaic model • draulic Model Results	
4 Flor • Ge foc bc • Imp sof prc CONSERVATION	Southwestern Ontario Orthophotography Project (5 Imagery with Hurricone Hazel Flood Depths	Next Steps Next Steps • Review Comments Received from the Public. • Finalize the Floodplain Mapping Report. • Finalize the Floodplain Maps.	And Project Contacts Dublic Input and Comment Feel free to provide written input or ca by the project team, using the comm contacting the individuals identified b Information and comments received authority of the Municipal Act and wi requirements of the Freedom of Inform Privacy Act. If you have any questions during the p additional information, please contact below.
	ECONSERVATION CONSERVATION	Saugeen Valley Conservation Authority Elise MacLeod, P.Eng. Manager, Water Resources 1078 Bruce Road 12, PO Box 150 Formosa, ON NOG IW0 Phone: 519-364-1255 ext, 235 Email: e.macleod@svca.on.ca	you for attending. D.M. Wills Associates Limited David Green, P.Eng. Group Leader, Dam Enginee 130 Jameson Drive Peterborough, ON K9J 089 Phone: 705-957-5672 ext. 268 Email: dgreen@dmwills.com

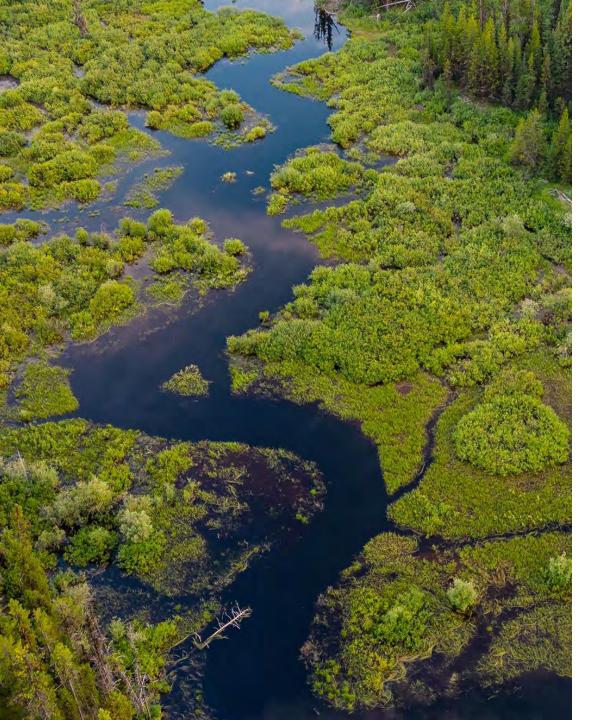
- Two PICs were held in 2023 & 2024 to educate residents and collect feedback
- The first PIC introduced FHIMP and the second presented draft mapping results

- ritten input or comment(s), for consideration using the comment sheets provided or by luals identified below.
- ments received are collected under the ipal Act and will be subject to the eedom of Information and Protection of
- ions during the project, or if you would like , please contact the individuals identified


g.

ciates Limited P.Fng. Dam Engineering **ON K9J 0B9** -5672 ext. 268 dmwills.com

Durham Creek Flood Hazard Mapping Project Public Meeting No. 2



Durham Floodplain Mapping

Durham Creek Floodplain Mapping

Two-Zone Floodplain with Floodway in blue (greatest depths / velocities) and Flood Fringe in red

Report Recommendations

1) SVCA and the Municipality of West Grey update the floodplain mapping for the Saugeen River and then consider updates to their Two-Zone floodplain planning policies and development approvals processes for both Durham Creek and the Saugeen River together.

2) Given the potential significant impacts of a failure of the dike at the Durham Upper Dam, the SVCA and Municipality of West Grey should consider the development of an Emergency Preparedness and Response Plan (EPRP) for the structure.

Thomkyour